Publications

From Hybrid Quantum - Classical Photonic Neural Networks

Hybrid Quantum-Classical Photonic Neural Networks

[arXiv]
Tristan Austin, Simon Bilodeau, Andrew Hayman, Nir Rotenberg, Bhavin Shastri


2024 112
Cryogenic microphotoluminescence spectra from nanowire quantum dots

Direct observation of non-linear phase shift induced by a single quantum emitter in a waveguide

[arXiv] Nature Communications 15, 7583 (2024)
M.J.R. Staunstrup, A. Tiranov, Y. Wang, S. Scholz, A.D. Wieck, A. Ludwig, L. Midolo, N. Rotenberg, P. Lodahl and H. Le Jeannic

A quantum dot acts as a reconfigurable phase shifter

Reconfigurable quantum photonic circuits based on quantum dots

[arXiv] Nanophotonics 13, 2951 (2024)
A. McCaw, J. Ewaniuk, B.J. Shastri, and N. Rotenberg

Group V switching sequence during growth of the
dot-in-a-rod section of the nanowire core. Light (dark) grey
region indicates rod (dot) growth. Inset shows a transmission
electron microscopy image of the corresponding section. The
scale bar indicates 20 nm.

Single photon emission in the telecom C-band from nanowire-based quantum dots

[arXiv] Applied Physics Letters 124, 044006 (2024)
Andrew N. Wakileh, Lingxi Yu, Doğa Dokuz, Sofiane Haffouz, Xiaohua Wu, Jean Lapointe, David B. Northeast, Robin L. Williams, Nir Rotenberg, Philip J. Poole, Dan Dalacu


2023 1 2
A new system to independently control two quantum dots coupled to a single photonic waveguide

Independent electrical control of two quantum dots coupled through a photonic crystal waveguide

[arXiv] Physical Review Letters 131, 033606 (2023)
X.-L. Chu, C. Papon, N. Bart, A.D Wieck, A. Ludwig, L. Midolo, N. Rotenberg and P. Lodahl

Do realistic quantum photonic neural networks work? We say yes

Imperfect quantum photonic neural networks

[arXiv] Advanced Quantum Technologies 6, 2200125 (2023)
J. Ewaniuk, J. Carolan, B.J. Shastri and N. Rotenberg


2022 1 2 3 4
If two emitters are coupled, they may response much more slowly (subradiant) or quickly (superradiant) then if they were alone, and this combined response is represented by the Green's tensor (shown here for a photonic crystal waveguide)

Sub-radiant states for imperfect quantum emitters coupled by a nanophotonic waveguide

[arXiv] Physical Review A 106, 053702 (2022)
X.-L. Chu, V. Angelopoulou, P. Lodahl and N. Rotenberg

2-time correlation function for 2 photons in a pulse simultaneously scattering from a quantum dot

Dynamical photon-photon interaction mediated by a quantum emitter

[arXiv] Nature Physics 18, 1191 (2022)
H. Le Jeannic, A. Tiranov, J. Carolan, T. Ramos, Y. Wang, M.H. Appel, S. Scholz, A.D. Wieck, A. Ludwig, N. Rotenberg, L. Midolo, J.J. García-Ripoll, A. S. Sørensen and P. Lodahl

Featured: News & Views (Quantum underpinnings of an all-photonic switch) and phys.org (A new method to enable efficient interactions between photons)

How much can a topological photonic waveguide enhance directional (chiral interactions)? Here, we show the answer, using an efficient, inverse optimization routine.

Optimizing the chiral Purcell factor for unidirectional single photon emitters in  topological photonic crystal waveguides using inverse design

[arXiv] Physical Review A 106, 033514 (2022)
E. Nussbaum, N. Rotenberg and S. Hughes

Directionality and emission enhancement of broken symmetry and topological photonic crystal waveguides

Chiral quantum optics in broken-symmetry and topological photonic crystal waveguides

[arXiv] Physical Review Research 4, 023082 (2022)
N. Hauff, H. Le Jeannic, P. Lodahl, S. Hughes and N. Rotenberg


2021 1 2
SEM of an Integrated whispering-gallery-mode resonator with embedded quantum dots

An integrated whispering-gallery-mode resonator for solid-state coherent quantum photonics

[arXiv] Nano Letters 21, 8707 (2021)
A. Brooks, X.-L. Chu, Z. Liu, R. Schott, A. Ludwig, A.D. Wieck, L. Midolo, P. Lodahl and N. Rotenberg

Experimental reconstruction of the few-photon nonlinear scattering matrix from a single quantum dot in a nanophotonic waveguide

Experimental reconstruction of the few-photon nonlinear scattering matrix from a single quantum dot in a nanophotonic waveguide

[arXiv] Physical Review Letters 126, 023603 (2021)
H. Le Jeannic, T. Ramos, S.F. Simonsen, T. Pregnolato, Z. Liu, R. Schott, A.D. Wieck, A. Ludwig, N. Rotenberg, J. García-Ripoll and P. Lodahl


2020 1 2
from Advanced Quantum Technologies 2020 paper

Lifetimes and quantum efficiencies of quantum dots deterministically positioned in photonic crystal waveguides

[arXiv] Advanced Quantum Technologies, 2000026 (2020)
X.-L. Chu, T. Pregnolato, R. Schott, A.D. Wieck, A. Ludwig, N. Rotenberg and P. Lodahl

 From article Deterministic positioning of nanophotonic waveguides around single self-assembled quantum dots

Deterministic positioning of nanophotonic waveguides around single self-assembled quantum dots

[arXiv] APL Photonics 5, 086101 (2020)
T. Pregnolato, X.-L. Chu, T. Schröder, R. Schott, A.D. Wieck, A. Ludwig, P. Lodahl and N. Rotenberg


2019 1 2 3
from the Coherent nonlinear optics of quantum emitters in nanophotonic waveguides publication

Coherent nonlinear optics of quantum emitters in nanophotonic waveguides (Review)

Nanophotonics 8, 1641 (2019)
P. Türschmann, H. Le Jeannic, S.F. Simonsen, H.R. Haakh, S. Götzinger, V. Sandoghdar, P. Lodahl and N. Rotenberg

from Chiral emission into nanophotonic resonators publication

Chiral emission into nanophotonic resonators

[arXiv] ACS Photonics 6, 961 (2019)
D.M. Cano, H.R. Haakh, and N. Rotenberg

from A full vectorial mapping of nanophotonic near fields

A full vectorial mapping of nanophotonic near fields

Light, Science & Applications 8, 28 (2019)
B. le Feber, J.E. Sipe, L. Kuipers, and N. Rotenberg


2018 1
article from Quantum optics with near-lifetime-limited quantum-dot transitions in a nanophotonic waveguide

Quantum optics with near-lifetime-limited quantum-dot transitions in a nanophotonic waveguide

[arXiv] Nano Letters 18, 1801 (2018)
H. Thyrrestrup, G. Kiršanskė, H. Le Jeannic, T. Pregnolato, L. Zhai, L. Raahauge, L. Midolo, N. Rotenberg, A. Javadi, R. Schott, A, D. Wieck, A. Ludwig, M.C. Löbl, I. Söllner, R.J. Warburton and P. Lodahl


2017 1 2 3
from article Chip-based all-optical control of single molecules coherently coupled to a nanoguide

Chip-based all-optical control of single molecules coherently coupled to a nanoguide

Nano Letters 17, 4791 (2017)
P. Türschmann, N. Rotenberg, J. Renger, I. Harder, O. Lohse, T. Utikal, S. Götzinger and V. Sandoghdar

from article Core-shell plasmonic nanohelices

Core-shell plasmonic nanohelices

ACS Photonics 4, 1858 (2017)
D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, N. Rotenberg and L. Kuipers

from article Small slot waveguide rings for on-chip quantum optical circuits

Small slot waveguide rings for on-chip quantum optical circuits

Optics Express 25, 5397 (2017)
N. Rotenberg, P. Türschmann, H.R. Haakh, D.M. Cano, S. Götzinger and V. Sandoghdar


2016 1
from article Harmonic generation from surface plasmon polaritons on single nanowires

Harmonic generation from surface plasmon polaritons on single nanowires (ACS Editor’s Choice Article)

ACS Photonics 3, 1446 (2016)
A. de Hoogh, A. Opheij, M. Wulf, N. Rotenberg and L. Kuipers


2015 1 2 3 4
from article Tracking nanoscale electric and magnetic singularities through three-dimensional space

Tracking nanoscale electric and magnetic singularities through three-dimensional space

Optica 2, 540 (2015)
N. Rotenberg, B. le Feber, T. D. Visser and L. Kuipers

from article creating and controlling polarization singularities in plasmonic field

Creating and controlling polarization singularities in plasmonic fields (Invited)

Photonics 2, 553 (2015)
A. de Hoogh, T.D. Visser, L. Kuipers and N. Rotenberg

from article Nanophotonic control of circular dipole emission

Nanophotonic control of circular dipole emission

Nature Communications 6, 6695 (2015)
B. le Feber, N. Rotenberg and L. Kuipers

from article Triggering extreme events at the nanoscale in photonic seas

Triggering extreme events at the nanoscale in photonic seas (Cover Article)

Nature Physics 11, 358 (2015)
C. Liu, R. van der Wel, N. Rotenberg, L. Kuipers, T.F. Krauss, A. di Falco, A. Fratalocchi


2014 1 2 3 4 5
from article Mapping nanoscale light field

Mapping nanoscale light fields (Review)

Nature Photonics 8, 918 (2014)
N. Rotenberg and L. Kuipers

from article Ultrafast photonics on gold nanowires: confinement, dispersion and pulse propagation

Ultrafast photonics on gold nanowires: confinement, dispersion and pulse propagation

ACS Photonics 1, 1173 (2014)
M. Wulf, A. de Hoogh, N. Rotenberg, and L. Kuipers

from article Optical singularities in plasmonic fields near single subwavelength holes

Optical singularities in plasmonic fields near single subwavelength holes (Invited; Selected IOP Highlight of 2014)

Journal of Optics 16, 114004 (2014)
A. de Hoogh, N. Rotenberg, and L. Kuipers

from article Model symmetries at the nanoscale: a route towards a complete vectorial near-field mapping

Model symmetries at the nanoscale: a route towards a complete vectorial near-field mapping

Optics Letters 39, 2802 (2014)
B. le Feber, N. Rotenberg, D. van Oosten, and L. Kuipers

from article Simultaneous measurement of nanoscale electric and magnetic optical fields

Simultaneous measurement of nanoscale electric and magnetic optical fields

Nature Photonics 8, 43 (2014)
B. le Feber, N. Rotenberg, D.M. Beggs and L. Kuipers


2013 from article Magnetic and electric response of single subwavelength holes 2 3 4
from article Magnetic and electric response of single subwavelength holes

Magnetic and electric response of single subwavelength holes

Physical Review B 88, 241408(R) (2013)
N. Rotenberg, T. L. Krijger, B. le Feber, M. Spasenović, F. J. García de Abajo, and L. Kuipers

from article Ultracompact (3 µm) silicon slow-light optical modulator

Ultracompact (3 µm) silicon slow-light optical modulator

Scientific Reports 3, 3546 (2013)
A. Opheij, N. Rotenberg, D.M. Beggs, I.H. Rey, T.F. Krauss and L. Kuipers

from article Unraveling nonlinear spectral evolution using nanoscale photonic near-field point-to-point measurements

Unraveling nonlinear spectral evolution using nanoscale photonic near-field point-to-point measurements

Nano Letters 13, 5858 (2013)
M. Wulf, D.M. Beggs, N. Rotenberg and L. Kuipers

from article Resonant coupling from a new angle: coherent control through geometry

Resonant coupling from a new angle: coherent control through geometry

Optics Express 21, 16504 (2013)
N. Rotenberg, D. M. Beggs, J. E. Sipe, and L. Kuipers


2012 from article Ultrafast tunable optical delay line based on indirect photonic transitions from article Plasmon scattering from single subwavelength holes
from article Ultrafast tunable optical delay line based on indirect photonic transitions

Ultrafast tunable optical delay line based on indirect photonic transitions

Physical Review Letters 108, 213901 (2012)
D.M. Beggs, I.H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers and T.F. Krauss

from article Plasmon scattering from single subwavelength holes

Plasmon scattering from single subwavelength holes

Physical Review Letters 108, 127402 (2012)
N. Rotenberg, M. Spasenović, T.L. Krijger, B. le Feber, F.J. García de Abajo and L. Kuipers


2011 from article Exploiting long-range order in quasiperiodic structures for broadband plasmonic excitation from article All-optical ultrafast control of beaming through a single sub-wavelength aperture in a metal film from article An analytic model of plasmonic coupling: surface relief gratings
from article Exploiting long-range order in quasiperiodic structures for broadband plasmonic excitation

Exploiting long-range order in quasiperiodic structures for broadband plasmonic excitation

Applied Physics Letters 98, 201108 (2011)
B. le Feber, J. Cesario, H. Zeijlemaker, N. Rotenberg and L. Kuipers

from article All-optical ultrafast control of beaming through a single sub-wavelength aperture in a metal film

All-optical ultrafast control of beaming through a single sub-wavelength aperture in a metal film

Optics Express 19, 7856 (2011)
M.A. Swillam, N. Rotenberg and H.M. van Driel

from article An analytic model of plasmonic coupling: surface relief gratings

An analytic model of plasmonic coupling: surface relief gratings

Physical Review B 83, 045416 (2011)
N. Rotenberg and J.E. Sipe


2010 from article Ultrafast silicon-based active plasmonics at telecom wavelengths from article Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces
from article Ultrafast silicon-based active plasmonics at telecom wavelengths

Ultrafast silicon-based active plasmonics at telecom wavelengths

Optics Express 18, 19761 (2010)
J.N. Caspers, N. Rotenberg and H.M. van Driel

from article Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces

Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces

Physical Review Letters 105, 017402 (2010)
N. Rotenberg, M. Betz, and H.M. van Driel


2009 from article Tunable ultrafast control of plasmonic coupling to gold films
from article Tunable ultrafast control of plasmonic coupling to gold films

Tunable ultrafast control of plasmonic coupling to gold films

Physical Review B 80, 245420 (2009)
N. Rotenberg, M. Betz and H.M. van Driel


2008 from article Three photon absorption in silicon for 2300 – 3300 nm from article Ultrafast control of grating-assisted light coupling to surface plasmons
from article Three photon absorption in silicon for 2300 – 3300 nm

Three photon absorption in silicon for 2300 – 3300 nm

Applied Physics Letters 93, 131102 (2008)
S. Pearl, N. Rotenberg and H.M. van Driel

from article Ultrafast control of grating-assisted light coupling to surface plasmons

Ultrafast control of grating-assisted light coupling to surface plasmons

Optics Letters 33, 2137 (2008)
N. Rotenberg, M. Betz and H.M. van Driel


2007 from article Two-Photon Absorption and Kerr coefficient of Silicon for 850-2200 nm from article Nonlinear absorption in Au films: Role of thermal effects
from article Two-Photon Absorption and Kerr coefficient of Silicon for 850-2200 nm

Two-Photon Absorption and Kerr coefficient of Silicon for 850-2200 nm

Applied Physics Letters 90, 191104 (2007)
A.D. Bristow, N. Rotenberg and H.M. van Driel

from article Nonlinear absorption in Au films: Role of thermal effects

Nonlinear absorption in Au films: Role of thermal effects

Physical Review B 75, 155426 (2007)
N. Rotenberg, A.D. Bristow, M. Pfeiffer, M. Betz and H.M. van Driel