Soil variable	R^2	<i>p</i> -value
Total carbon	0.62	***
Total nitrogen	0.62	***
Gravimetric moisture	0.60	***
рН	0.59	***
Soil depth	0.51	***
Dissolved organic carbon	0.49	***
Total Dissolved Nitrogen (TDN)	0.49	***
Microbial biomass carbon (MBC)	0.42	***
Microbial biomass nitrogen (MBN)	0.42	***
Ammonium (NH4)	0.35	***

Table S1. Goodness of fit (squared correlation coefficient, R^2 ; including *p*-values) statistics of the biogeochemical vectors that overlie the PCoA biplots in Figure 2. TDN is total dissolved nitrogen. Data used includes every sample across soil depth and time (n = 163, see Figure 1). *** indicates $p \le 0.0001$.

Soil variable	AS	/ richness	Faith'	s diversity	Faith'	s diversity	Faith	s diversity
				All layers ^a	Orga	anic layer ^ь	Min	eral layer ^c
	rs	<i>p</i> -value	rs	<i>p</i> -value	rs	<i>p</i> -value	rs	<i>p</i> -value
рН	-0.408	***	0.642	***	0.275	*	0.045	NS
Soil depth	-0.408	***	0.638	***	0.394	***	-0.016	NS
PO ₄	-0.256	***	0.059	NS	-0.425	***	-0.062	NS
MBP	0.274	***	-0.537	***	-0.553	***	0.178	NS
Total C	0.318	***	-0.694	***	-0.565	***	-0.148	NS
Total N	0.349	***	-0.542	***	0.311	**	-0.110	NS
Gravimetric moisture	0.354	***	-0.703	***	-0.230	*	-0.273	*
NH ₄	0.364	***	-0.64	***	0.121	NS	-0.278	*
MBN	0.396	***	-0.678	***	-0.487	***	-0.048	NS
MBC	0.398	***	-0.675	***	-0.494	***	-0.030	NS

Table S2. Spearman correlations between either ASV richness or Faith's phylogenetic diversity index and the same soil variables used as bi-plot vectors in Figures 2 and Table S1 determined using *qiime diversity alpha-correlation* function. Faith's phylogenetic diversity was either calculated for the complete dataset (163 samples, a) or for organic (5-10 cm depth, b) and mineral (20-50 cm depth, c) soil layers separately. Soil edaphic variables are microbial biomass pools (carbon, MBC; nitrogen, MBN; and phosphorus, MBP), pH, total soil C and soluble nutrients (ammonium, NH4; nitrate; NO₃; and phosphate, PO₄). Data used includes every sample across soil depth and time (n = 163, see Figure 1), and significance is shown as NS (not significant), p > 0.05; *, p < 0.05; **, p < 0.01; and ***, $p \le 0.001$.

ASV#	Phylum	Class	Order	Family	Genus	Overall
						relative
						abundance
1	Proteobacteria	Alphaproteobacteria	Rhizobiales	Xanthobacteraceae		2.24
2	Chloroflexi	AD3	AD3	AD3	AD3	1.14
3	Acidobacteriota	Acidobacteriae	Acidobacteriales			0.98
4	WPS-2	WPS-2	WPS-2	WPS-2	WPS-2	0.88
5	Proteobacteria	Gammaproteobacteria	WD260	WD260	WD260	0.87
6	Acidobacteriota	Acidobacteriae	Subgroup_2	Subgroup_2	Subgroup_2	0.85
7	Chloroflexi	AD3	AD3	AD3	AD3	0.76
8	Chloroflexi	AD3	AD3	AD3	AD3	0.73
9	Verrucomicrobiota	Verrucomicrobiae	Chthoniobacterales	Chthoniobacteraceae	Candidatus_Udaeobacter	0.69
10	Acidobacteriota	Acidobacteriae	Bryobacterales	Bryobacteraceae	Bryobacter	0.66
11	Acidobacteriota	Acidobacteriae	Acidobacteriales			0.60
12	Proteobacteria	Gammaproteobacteria	Gammaproteobacteria_Incertae_Sedis	Unknown_Family	Acidibacter	0.59
13	Acidobacteriota	Acidobacteriae	Subgroup_2	Subgroup_2	Subgroup_2	0.58
14	Acidobacteriota	Blastocatellia	Pyrinomonadales	Pyrinomonadaceae	RB41	0.56
15	Proteobacteria	Alphaproteobacteria	Elsterales			0.56
16	Acidobacteriota	Acidobacteriae	Subgroup_2	Subgroup_2	Subgroup_2	0.55
17	Acidobacteriota	Acidobacteriae	Acidobacteriales	Koribacteraceae	Candidatus_Koribacter	0.53
18	Proteobacteria	Alphaproteobacteria	Acetobacterales	Acetobacteraceae		0.52
19	Chloroflexi	Dehalococcoidia	S085	S085	S085	0.50
20	Acidobacteriota	Acidobacteriae	Acidobacteriales	Acidobacteriaceae	Acidipila	0.49

Table S3. Overall relative abundance of the 20 most abundant ASVs across all soil depths and time (n=163 soil samples, see Figure1).

	Rel							
ASV_ID	e	Phylum	Class	Order	Family	Genus	rs	р
1346	0.01	Bacteroidota	Bacteroidia	Sphingobacteriales	KD3-93	KD3-93	0.24	0.00
				Gammaproteobacteria_	·	Candidatus_Ovatusbac		
176	0.11	Proteobacteria	Gammaproteobacteria	Incertae_Sedis	Unknown_Family	ter	0.24	0.00
4976	0.00	Bdellovibrionota	Bdellovibrionia	Bdellovibrionales	Bdellovibrionaceae	Bdellovibrio	0.23	0.00
6283	0.00	Proteobacteria	Alphaproteobacteria	Acetobacterales	Acetobacteraceae		0.23	0.00
2359	0.00	Acidobacteriota	Acidobacteriae	Solibacterales	Solibacteraceae	Candidatus_Solibacter	0.22	0.00
4664	0.00	Actinobacteriota	Acidimicrobiia	IMCC26256	IMCC26256	IMCC26256	0.22	0.00
661	0.03	Acidobacteriota	Acidobacteriae	Subgroup_2	Subgroup_2	Subgroup_2	0.22	0.01
8852	0.00	Verrucomicrobiota	Verrucomicrobiae	Methylacidiphilales	Methylacidiphilaceae		0.21	0.01
8583	0.00	Verrucomicrobiota	Chlamydiae	Chlamydiales	cvE6	cvE6	0.21	0.01
10767	0.00	Proteobacteria	Gammaproteobacteria	Diplorickettsiales	Diplorickettsiaceae		0.21	0.01
6386	0.00	Proteobacteria	Alphaproteobacteria	Rhizobiales	Xanthobacteraceae		0.21	0.01
						uppultured Alphaprotec		
218	0.09	Proteobacteria	Alphaproteobacteria	Micropepsales	Micropepsaceae	bacteria	, 0.21	0.01
6418	0.00	Actinobacteriota	Thermoleophilia	Solirubrobacterales	Solirubrobacteraceae	Conexibacter	0.20	0.01
10346	0.00	Bdellovibrionota	Oligoflexia	Oligoflexales			0.20	0.01
10367	0.00	Proteobacteria	Alphaproteobacteria	Paracaedibacterales	Paracaedibacteraceae	Candidatus_Finniella	0.20	0.01
1974	0.01	Myxococcota	Polyangia	Polyangiales	Polyangiaceae	Pajaroellobacter	-0.24	0.00
3704	0.00	Myxococcota	Polyangia	Polyangiales	Polyangiaceae	Pajaroellobacter	-0.24	0.00
1495	0.01	Proteobacteria	Alphaproteobacteria	Rhizobiales	Beijerinckiaceae	Roseiarcus	-0.24	0.00
1804	0.01	Acidobacteriota	Acidobacteriae	Acidobacteriales			-0.24	0.00
1571	0.01	Acidobacteriota	Acidobacteriae	Bryobacterales	Bryobacteraceae	Bryobacter	-0.25	0.00
6005	0.00	Proteobacteria	Gammaproteobacteria	Diplorickettsiales	Diplorickettsiaceae	Aquicella	-0.25	0.00
7830	0.00	Proteobacteria	Gammaproteobacteria	Burkholderiales			-0.25	0.00
2451	0.00	Acidobacteriota	Acidobacteriae	Acidobacteriales			-0.26	0.00
10378	0.00	Bdellovibrionota	Bdellovibrionia	Bdellovibrionales	Bdellovibrionaceae	Bdellovibrio	-0.26	0.00
3272	0.00	Myxococcota	Мухососсіа	Myxococcales	Мухососсасеае	Myxococcaceae	-0.27	0.00

4663	0.00	Proteobacteria	Alphaproteobacteria	Caulobacterales	Caulobacteraceae		-0.27	0.00
3525	0.00	Proteobacteria	Gammaproteobacteria	Diplorickettsiales	Diplorickettsiaceae		-0.28	0.00
3261	0.00	Proteobacteria	Gammaproteobacteria	Burkholderiales	A21b	A21b	-0.29	0.00
3095	0.00	Actinobacteriota	Actinobacteria	Frankiales	Acidothermaceae	Acidothermus	-0.29	0.00
2017	0.01	Acidobacteriota	Acidobacteriae	Bryobacterales	Bryobacteraceae	Bryobacter	-0.30	0.00

Table S4. Spearman correlations of the 15 most strongly positively (top) and negatively (bottom) correlated ASVs with soil depth. Values were determined using the Python script *observation_metadata_correlation.py*. Data are from all 163 samples, across seasonal time and soil depth (see Figure 1). Positive correlation coefficients (*r*_S) mean that ASV relative abundances increased with increasing soil depth.

	Rel							
ASV_ID	e	Phylum	Class	Order	Family	Genus	rs	р
1862	0.01	Proteobacteria	Alphaproteobacteria	Rhizobiales	Xanthobacteraceae		0.24	0.00
1346	0.01	Bacteroidota	Bacteroidia	Sphingobacteriales	KD3-93	KD3-93	0.23	0.00
10767	0.00	Proteobacteria	Gammaproteobacteria	Diplorickettsiales	Diplorickettsiaceae		0.23	0.00
176	0.11	Drotophostoria	Commonratophastaria	Gammaproteobacteria_	- Unknown Family	Candidatus_Ovatusbac	0.22	0.00
3260	0.11	Vorrucomicrobioto	Vorrucomicrobiao	Vorrucomicrobiolos	Vorrucomicrobiacoao	lei	0.23	0.00
3200 0502	0.00	Verrucomicrobiota	Chlomydiae	Chlomydialog	venuconiciobiaceae	avEe	0.23	0.00
0000	0.00		Asidobastarias	Chiamyulales		CVEO	0.22	0.00
2359	0.00		Acidobacienae	Solibacterales	Solibacteraceae	Candidatus_Solibacter	0.21	0.01
2566	0.00	Bacteroidota	Bacteroidia	Sphingobacteriales	Sphingobacteriaceae	Mucilaginibacter	0.21	0.01
9527	0.00	Cyanobacteria	Sericytochromatia	Sericytochromatia	Sericytochromatia	Sericytochromatia	0.21	0.01
5199	0.00	Chloroflexi	AD3	AD3	AD3	AD3	0.21	0.01
7509	0.00	Patescibacteria	Saccharimonadia	Saccharimonadales	Saccharimonadales	Saccharimonadales	0.21	0.01
10346	0.00	Bdellovibrionota	Oligoflexia	Oligoflexales	0	0	0.21	0.01
5184	0.00	Bdellovibrionota	Bdellovibrionia	Bdellovibrionales	Bdellovibrionaceae	Bdellovibrio	0.21	0.01
1620	0.01	Proteobacteria	Alphaproteobacteria	Rhizobiales	Xanthobacteraceae	0	0.21	0.01
3944	0.00	Proteobacteria	Gammaproteobacteria	Diplorickettsiales	Diplorickettsiaceae	Aquicella	0.21	0.01
4384	0.00	Proteobacteria	Gammaproteobacteria	Diplorickettsiales	Diplorickettsiaceae	Aquicella	-0.22	0.00
3525	0.00	Proteobacteria	Gammaproteobacteria	Diplorickettsiales	Diplorickettsiaceae	0	-0.23	0.00
3095	0.00	Actinobacteriota	Actinobacteria	Frankiales	Acidothermaceae	Acidothermus	-0.23	0.00
7900	0.00	Proteobacteria	Gammaproteobacteria	Diplorickettsiales	Diplorickettsiaceae	Aquicella	-0.23	0.00
3042	0.00	Proteobacteria	Alphaproteobacteria	Rhodospirillales	Magnetospirillaceae	0	-0.23	0.00
10378	0.00	Bdellovibrionota	Bdellovibrionia	Bdellovibrionales	Bdellovibrionaceae	Bdellovibrio	-0.23	0.00
2461	0.00	Acidobacteriota	Blastocatellia	Pyrinomonadales	Pyrinomonadaceae	RB41	-0.24	0.00
5629	0.00	Dependentiae	Babeliae	Babeliales	Babeliaceae	Babeliaceae	-0.24	0.00
14308	0.00	Acidobacteriota	Acidobacteriae	Subgroup_13	Subgroup_13	Subgroup_13	-0.24	0.00
1906	0.01	Proteobacteria	Alphaproteobacteria	Elsterales	URHD0088	URHD0088	-0.24	0.00
2646	0.00	Acidobacteriota	Blastocatellia	Pyrinomonadales	Pyrinomonadaceae	RB41	-0.25	0.00
4663	0.00	Proteobacteria	Alphaproteobacteria	Caulobacterales	Caulobacteraceae	0	-0.25	0.00
8322	0.00	Chloroflexi	OLB14	OLB14	OLB14	OLB14	-0.26	0.00

2017	0.01	Acidobacteriota	Acidobacteriae	Bryobacterales	Bryobacteraceae	Bryobacter	-0.26 0.00
3261	0.00	Proteobacteria	Gammaproteobacteria	Burkholderiales	A21b	A21b	-0.26 0.00

Table S5. Spearman correlations of the 15 most strongly positively (top) and negatively (bottom) correlated ASVs with soil pH. Values were determined using the Python script *observation_metadata_correlation.py*. Data used are from all 163 samples, across seasonal time and soil depth (see Figure 1). Positive correlation coefficient (r_s) means that taxon relative abundance increased with increasing pH and negative r_s means that taxon relative abundance decreased with increasing pH.

ASV#	Phylum	Class	Order	Family	Genus	Overall relative	Within SparCC
						abundance (%)	component relative abundance (%)
Organic	soil network compone	ent					
13	Acidobacteriota	Acidobacteriae	Subgroup_2	Subgroup_2	Subgroup_2	0.58	6.66
20	Acidobacteriota	Acidobacteriae	Acidobacteriales	Acidobacteriaceae	Acidipila	0.49	5.63
27	Acidobacteriota	Acidobacteriae	Acidobacteriales			0.42	4.89
29	Acidobacteriota	Acidobacteriae	Acidobacteriales			0.41	4.74
32	Acidobacteriota	Acidobacteriae	Subgroup_2	Subgroup_2	Subgroup_2	0.40	4.70
37	Actinobacteriota	Actinobacteria	Frankiales	Acidothermaceae	Acidothermus	0.35	4.21
43	Acidobacteriota	Acidobacteriae	Subgroup_2	Subgroup_2	Subgroup_2	0.31	3.63
45	Acidobacteriota	Acidobacteriae	Acidobacteriales	Acidobacteriaceae	Acidipila	0.31	3.60
53	Actinobacteriota	Actinobacteria	Frankiales	Acidothermaceae	Acidothermus	0.27	3.19
58	Proteobacteria	Gammaproteobacteria	WD260	WD260	WD260	0.25	2.95
59	Acidobacteriota	Acidobacteriae	Acidobacteriales	Acidobacteriaceae		0.25	2.83
60	Acidobacteriota	Acidobacteriae	Acidobacteriales	Acidobacteriaceae	Acidipila	0.25	2.88
65	Acidobacteriota	Acidobacteriae	Acidobacteriales			0.24	2.82
71	Acidobacteriota	Acidobacteriae	Acidobacteriales	Acidobacteriaceae	Granulicella	0.22	2.71
77	Acidobacteriota	Acidobacteriae	Acidobacteriales			0.22	2.51
Mineral	soil network compone	ent					
2	Chloroflexi	AD3	AD3	AD3	AD3	1.14	6.95
4	WPS-2	WPS-2	WPS-2	WPS-2	WPS-2	0.88	5.00
7	Chloroflexi	AD3	AD3	AD3	AD3	0.76	4.14
8	Chloroflexi	AD3	AD3	AD3	AD3	0.73	5.01
9	Verrucomicrobiota	Verrucomicrobiae	Chthoniobacterales	Chthoniobacteraceae	Candidatus_Udaeobacter	0.69	4.66
12	Proteobacteria	Gammaproteobacteria	Gammaproteobacte ria_Incertae_Sedis	Unknown_Family	Acidibacter	0.59	2.98
14	Acidobacteriota	Blastocatellia	Pyrinomonadales	Pyrinomonadaceae	RB41	0.56	3.52
19	Chloroflexi	Dehalococcoidia	S085	S085	S085	0.50	2.94
21	Actinobacteriota	Acidimicrobiia	IMCC26256	IMCC26256	IMCC26256	0.48	2.53
23	Bacteroidota	Bacteroidia	Chitinophagales	Chitinophagaceae		0.46	3.67
26	Proteobacteria	Alphaproteobacteria	Rhizobiales	Xanthobacteraceae		0.43	2.33
30	WPS-2	WPS-2	WPS-2	WPS-2	WPS-2	0.41	2.25
31	Proteobacteria	Alphaproteobacteria	Rhizobiales	Xanthobacteraceae	Pseudolabrys	0.40	2.81
38	Proteobacteria	Alphaproteobacteria	Micropepsales	Micropepsaceae	-	0.34	2.05
44	Acidobacteriota	Acidobacteriae	Subgroup_2	Subgroup_2	Subgroup_2	0.31	1.81

Table S6. Relative abundance of the 15 most abundant ASVs within the organic and mineral soil network components, respectively, identified by SparCC analysis. Table shows ASV overall relative abundance across the entire dataset, and within the SparCC network component (n=163 soil samples for all, see Figure 1).

Group 1	Group 2	Sample size	Permutations	pseudo-F	p-value
5 cm donth					
Autumn	Bud-break	15	000	1 331/18	0 226
Autumn	Early snow melt	10	000	3 185680	0.220
Autumn	Early Show men	12	999	2 050127	0.014
Autumn		19	999	2.900127	0.000
Autumn	Late Showineit	10	999	1.241009	0.210
Autumn Bud brook	Feak Summer	10	999	5 220124	0.204
Dud-break		13	999	0.230124	0.001 *
Dud-break		20	999	0.249409	0.001
Dud-break		12	999	1.040100	0.303
Bud-break	Peak summer	14	999	0.678305	0.717
Early snow melt	Frozen	17	999	1.696945	0.053
Early snow melt	Late snowmelt	9	999	4.009615	0.018
Early snow melt	Peak summer	11	999	3.848512	0.005 *
Frozen	Late snowmelt	16	999	3.98834	0.003 *
Frozen	Peak summer	18	999	4.682041	0.001 *
Late snowmelt	Peak summer	10	999	0.919008	0.483
10 cm depth					
Autumn	Bud-break	17	999	1.677024	0.075
Autumn	Frozen	18	999	5.608545	0.001 *
Autumn	Late snowmelt	10	999	2.785497	0.004 *
Autumn	Peak summer	12	999	0.923899	0.508
Bud-break	Frozen	23	999	3.7904	0.001 *
Bud-break	Late snowmelt	15	999	2.306229	0.032
Bud-break	Peak summer	17	999	1.379574	0.196
Frozen	Late snowmelt	16	999	1 388246	0 169
Frozen	Peak summer	18	999	5 765646	0.001 *
Late snowmelt	Peak summer	10	999	2.933247	0.013
20 am danth					
	Dud brook	15	000	1 261205	0.150
Autumn	Bud-break	15	999	1.201305	0.150
Autumn		9	999	1.3///52	0.157
Autumn	Peak summer	12	999	1.13887	0.247
Bud-break	Frozen	12	999	2.03096	0.016
Bud-break	Peak summer	15	999	0.858988	0.673
Frozen	Peak summer	9	999	2.189237	0.010
30 cm depth					
Autumn	Bud-break	14	999	1.404761	0.135
Autumn	Frozen	8	999	1.525712	0.239
Autumn	Peak summer	12	999	1.276401	0.170
Bud-break	Frozen	10	999	1.390644	0.152
Bud-break	Peak summer	14	999	1.516393	0.092
Frozen	Peak summer	8	999	1.038967	0.431
40 cm depth					
Autumn	Frozen	12	999	2 048695	0 009 **
Autumn	Poak summer	12	999	1 3/383	0.167
Frozen	Peak summer	12	999	1.606587	0.083
50 cm depth	Frazan	10	000	1 600000	0.07
Autumn	FIOZEN	12	333	1.002330	0.07

Table S7. Results of the pairwise PERMANOVA using the beta-group-significance function inQIIME2 generated for Figure 8. Significant probabilities are shown as in Table S2.

ASV#	Phylum	Class	Order	Family	Genus	Overall relative abundance (%)	Within soil layer relative abundance (%)
156	Caldisericota	Caldisericia	Caldisericales	Caldisericaceae	Caldisericum	0.13	4.82
292	Bacteroidota	Bacteroidia	Bacteroidales	Prolixibacteraceae	BSV13	0.07	2.55
321	Caldisericota	Caldisericia	Caldisericales	Caldisericaceae	Caldisericum	0.06	2.28
232	Actinobacteriota	Coriobacteriia	OPB41	OPB41	OPB41	0.08	1.96
372	Proteobacteria	Gammaproteobacteria	Burkholderiales	Comamonadaceae	Rhodoferax	0.05	1.93
384	Bacteroidota	Bacteroidia	Bacteroidales	Paludibacteraceae	Paludibacter	0.05	1.83
395	Caldisericota	Caldisericia	Caldisericales	Caldisericaceae	Caldisericum	0.05	1.77
404	Caldisericota	Caldisericia	Caldisericales	Caldisericaceae	Caldisericum	0.05	1.74
406	Caldisericota	Caldisericia	Caldisericales	Caldisericaceae	Caldisericum	0.05	1.73
453	Proteobacteria	Gammaproteobacteria	Burkholderiales	Comamonadaceae	Rhodoferax	0.04	1.60
273	Acidobacteriota	Holophagae	Subgroup_7	Subgroup_7	Subgroup_7	0.07	1.39
492	Proteobacteria	Gammaproteobacteria	Burkholderiales	Nitrosomonadaceae	GOUTA6	0.04	1.38
528	Bacteroidota	Bacteroidia	Bacteroidales	Paludibacteraceae	Paludibacter	0.04	1.34
569	Actinobacteriota	Thermoleophilia	Gaiellales	uncultured_Solirubrobacter		0.03	1.16
617	Desulfobacterota	Syntrophia	Syntrophales	Smithellaceae	Smithella	0.03	1.15

Table S8. Relative abundance of the 15 most abundant ASVs within the permafrost transition soil layer at 60 cm depth (n=6 soilsamples, see Figure 1). Table shows ASV overall relative abundance across the entire dataset (n=163 soil samples), and within the 60cm soil layer (n=6).

5 cm	Seasonal change	Winter	Early snowmelt	Late snowmelt	Spring	Bud-break	Summer	Autumn
depth		(126-139)	(146)	(159)	(173)	(182-183)	(203-209)	(229-234)
рН	$F_{6,35} = 2.8, p = 0.03$	3.4 ± 0.02	3.5 ± 0.02	3.4 ± 0.03	3.5 ± 0.06	3.4 ± 0.03	3.5 ± 0.05	3.4 ± 0.01
Total N	$F_{6,35} = 4.7, p = 0.001$	1.3 ± 0.07	1.2 ± 0.09	1.5 ± 0.14	1.9 ± 0.29	1.7 ± 0.02	1.8 ± 0.10	1.5 ± 0.06
Total C	$F_{6,35} = 2.2, p = 0.07$	44.4 ±						
		0.37	44.7 ± 0.3	43.7 ± 0.81	42.2 ± 0.34	44.1 ± 0.67	43.3 ± 0.80	44.4 ± 0.43
NO₃⁻-N	$F_{5,31} = 3.4, p = 0.02$	0.83 ±						
		0.11	N/A	1.26 ± 0.28	0.36 ± 0.19	0.30 ± 0.19	1.20 ± 0.40	0.60 ± 0.09
NH4+-N	$F_{6,35} = 2.2, p = 0.06$	3.1 ± 0.64	1.5 ± 0.11	1.9 ± 0.20	3.8 ± 0.20	2.7 ± 0.17	3.1 ± 0.50	2.7 ± 0.19
PO4 ³⁻ -P	$F_{6,35} = 6.8, p < 0.0001$	15.1 ± 3.2	21.8 ± 4.14	8.1 ± 6.0	1.3 ± 0.48	2.2 ± 0.67	0.9 ± 0.44	1.6 ± 0.24
DOC	F _{6,35} = 9.4, <i>p</i> < 0.0001	1119 ±						
		76.4	889 ± 49.6	809 ± 52.2	671 ± 18.0	686 ± 20.6	635 ± 64.9	688 ± 25.4
DON	$F_{5,31} = 2.1, p = 0.09$	69.6 ± 7.4	46.9 ± 2.62	51.7 ± 5.9	58.3 ± 3.2	52.6 ± 2.3	51.3 ± 6.4	46.0 ± 2.1
MBC	F _{6,35} = 15.5, <i>p</i> < 0.0001	5845 ±						
		269	5899 ± 312	4059 ± 309	3013 ± 101	3689 ± 316	3157 ± 286	3778 ± 337
MBN	F _{6,35} = 3.6, <i>p</i> < 0.01	398 ±						
		33.9	413 ± 16.1	333 ± 20.3	280 ± 4.9	301 ± 25.4	281 ± 21.8	339 ± 28.0
MBP	F _{6,35} = 14.1, <i>p</i> < 0.0001	118 ±						
	-	14.5	14 <u>7 ± 17</u> .5	<u>58.0 ± 31.</u> 1	14. <u>9 ± 6.6</u>	N/A	13.6 ± 7.1	<u>13.2 ± 2.</u> 6
10 cm	Seasonal change	Winter	Early snowmelt	Late snowmelt	Spring	Bud-break	Summer	Autumn
depth	-	(126-139)	(146)	(159)	(173)	(182-183)	(203-209)	(229-234)
pН	F _{6,34} = 8.4, <i>p</i> < 0.0001	3.4 ± 0.08	3.4 ± 0.03	3.5 ± 0.10	3.7 ± 0.10	3.6 ± 0.06	3.6 ± 0.03	3.9 ± 0.01
Total N	$F_{6,34} = 2.6, p = 0.03$	1.6 ± 0.10	1.5 ± 0.13	1.5 ± 0.13	1.9 ± 0.09	1.7 ± 0.13	1.7 ± 0.12	2.0 ± 0.13
Total C		40.7 ± 3.0	42.1 ± 1.34	41.5 ± 1.03	39.9 ± 1.0	36.9 ± 3.5	39.2 ± 1.3	39.8 ± 1.30
NO₃⁻-N		0.53 ±						
		0.10	0.86 ± 0.86	0.59 ± 0.20	0.33 ± 0.12	0.20 ± 0.10	0.63 ± 0.14	0.35 ± 0.06
NH₄⁺-N		3.0 ± 0.76	2.7 ± 0.38	1.6 ± 0.23	2.9 ± 0.16	2.4 ± 0.39	3.2 ± 0.90	2.2 ± 0.54
PO₄ ³⁻ -P	$F_{6.34} = 16.6$, $p < 0.0001$	3.9 ± 0.95	5.2 ± 1.8	3.0 ± 2.5	0.15 ± 0.10	0.44 ± 0.20	0.13 ± 0.07	0.20 ± 0.08
DOC	$F_{6.34} = 3.7$. $p < 0.01$	868 ±						
		95.5	1044 ± 182	758 ± 77.2	496 ± 71.0	596 ± 97.2	549 ± 51.8	467 ± 54.5
DON		66.7 ± 9.3	73.4 ± 12.6	51.5 ± 4.9	43.6 ± 4.8	48.7 ± 6.9	52.3 ± 6.6	44.2 ± 5.2
MBC	$F_{6.34} = 4.7$, $p < 0.01$	4005 +						
	, , , , , , , , , , , , , , , , , , ,	542	4647 + 334	2724 + 386	1360 + 300	2146 + 412	1433 + 265	1546 + 119
MBN	$F_{6.34} = 24$ $p < 0.05$	288 +	1017 2 004	2.2.1 ± 500		2110 2112	. 100 ± 200	
	· 0,04 - 2. 1, p < 0.00	43.6	361 + 33 4	221 + 38 2	127 + 38 7	194 + 38 7	137 + 27 0	140 + 19 2
MBP	$F_{6.34} = 6.5, n < 0.0001$	19.6 + 9.6	25.2 + 9.0	24 4 + 21 4	0.2 + 0.00	N/A	1.9 ± 0.57	2.5 ± 0.78
	0.34 - 0.00 p < 0.000 r	10.0 ± 0.0	20.2 ± 0.0	£1.7±£1.7	0.2 ± 0.00	11//3	1.0 ± 0.01	2.0 ± 0.70
20 cm	Seasonal change	Winter	Farly snowmalt	l ate snowmelt	Spring	Bud-break	Summer	Autump
denth	Geasonal change	(126-139)	(146)	(159)	(173)	(182-183)	(203-209)	(229-234)
nH		(120 100)	(140)	(100)	53+030	50+022	(200 200)	52+020
Total N				$+.0 \pm 0.19$ 0.13 ± 0.01	0.0 ± 0.00	0.0 ± 0.22	4.0 ± 0.00	5.2 ± 0.20
Total				0.13 ± 0.01	25.10	0.10 ± 0.03	16.002	0.10 ± 0.00
	$E_{1} = 26 p = 0.07$			2.0 ± 0.39	2.0 ± 1.0	3.3 ± 0.97	4.0 ± 0.93	3.4 ± 1.2
	$r_{4,20} = 2.0, p = 0.07$			0.97 ± 0.30	0.02 ± 0.15	0.21 ± 0.08	0.32 ± 0.10	0.49 ± 0.11
	$E_{1} = 22 = 201$			0.05 ± 0.09	0.30 ± 0.08	0.40 ± 0.07	0.40 ± 0.03	0.31 ± 0.20
PO4° -P	$F_{4,20} = 2.3, p < 0.1$			0.82 ± 0.39	0.7 ± 4.7	1.5 ± 0.35	3.5 ± 0.36	2.4 ± 0.70
DOC	$r_{4,20} = 2.4, p = 0.08$			82.3 ± 14.7	41.2 ± 0.1	30.3 ± 3.7	$0/.4 \pm 1.9$	41.2 ± 9.0
DON				7.0 ± 1.4	4.4 ± 1.0	0.5 ± 0.78	1.6 ± 0.79	7.3 ± 2.4
NIBC				53.3 ± 21.5	36.2 ± 26.4	13.8 ± 25.9	57.8 ± 23.0	60.6 ± 20.2
MDN							B / I I / 2	< 5 ± 11 60
MBN				2.7 ± 0.02	4.0 ± 2.2	0.0 ± 1.3	5.4 ± 1.75	3.3 ± 0.03

30 cm	Seasonal change	Winter	Early snowmelt	Late snowmelt	Spring	Bud-break	Summer	Autumn
depth		(126-139)	(146)	(159)	(173)	(182-183)	(203-209)	(229-234)
pН					5.6 ± 0.39	5.5 ± 0.10	5.6 ± 0.11	5.8 ± 0.09
Total N					0.07 ± 0.05	0.07 ± 0.02	0.07 ± 0.01	0.08 ± 0.01
Total C					1.7 ± 1.0	1.2 ± 0.37	0.73 ± 0.28	1.2 ± 0.19
NO₃⁻-N					0.33 ± 0.03	0.26 ± 0.01	0.23 ± 0.10	0.30 ± 0.04
NH4 ⁺ -N					0.24 ± 0.00	0.22 ± 0.01	0.14 ± 0.02	0.22 ± 0.07
PO4 ³⁻ -P	F _{3,18} = 12.7, <i>p</i> < 0.0001				14.7 ± 13.2	1.6 ± 0.03	10.2 ± 0.70	8.9 ± 2.7
DOC	F _{3,18} = 7.4, <i>p</i> < 0.01				44.9 ± 4.4	34.9 ± 1.8	26.0 ± 2.0	29.8 ± 2.3
DON					3.8 ± 0.27	3.8 ± 0.22	2.6 ± 0.32	3.8 ± 0.85
MBC	F _{3,18} = 6.8, <i>p</i> < 0.01				31.6 ± 11.2	32.1 ± 4.2	8.3 ± 3.3	22.8 ± 6.3
MBN	$F_{3,18} = 4.0, p = 0.02$				1.2 ± 0.57	2.0 ± 0.18	0.64 ± 0.30	0.84 ± 0.22
MBP					0.35 ± 0.35	N/A	0.53 ± 0.28	0.86 ± 0.46
10 om	Second change	Mintor	Forly on ownalt	Lata anowmalt	Coring	Bud brook	Summer	Autumn
40 CIII	Seasonal change	(126 120)		Late Showment	(172)	(102 102)	(202 200)	(220.224)
		(120-139)	(140)	(159)	(173)	50,007	(203-209) 5.0 ± 0.07	60:006
PFI Total N						5.9 ± 0.07	5.9 ± 0.07	0.0 ± 0.00
Total N						0.05 ± 0.01	0.06 ± 0.01	0.05 ± 0.01
Total C						0.57 ± 0.16	0.41 ± 0.09	0.41 ± 0.11
NO₃⁻-N						0.19 ± 0.08	0.24 ± 0.07	0.35 ± 0.07
NH₄+-N						0.20 ± 0.02	0.13 ± 0.00	0.23 ± 0.11

PO4 ³⁻ -P DOC DON MBC MBN MBP	$F_{2,15} = 25.6, p < 0.0001$ $F_{2,15} = 2.8, p = 0.09$ $F_{2,15} = 9.9, p = 0.02$ $F_{2,15} = 14.2, p < 0.001$					$\begin{array}{c} 3.3 \pm 0.66 \\ 24.0 \pm 1.8 \\ 1.8 \pm 0.12 \\ 38.2 \pm 17.7 \\ 4.0 \pm 1.9 \\ \text{N/A} \end{array}$	$13.2 \pm 1.4 \\ 18.9 \pm 1.6 \\ 1.7 \pm 0.20 \\ 4.5 \pm 0.80 \\ 0.16 \pm 0.04 \\ 1.6 \pm 1.1$	$16.6 \pm 2.2 \\ 20.3 \pm 1.3 \\ 3.1 \pm 1.4 \\ 4.6 \pm 1.5 \\ 0.33 \pm 0.11 \\ 0.67 \pm 0.55$
50 cm depth	Seasonal change	Winter (126-139)	Early snowmelt (146)	Late snowmelt (159)	Spring (173)	Bud-break (182-183)	Summer (203-209)	Autumn (229-234)
pH Total N Total C NO ₃ ⁻ -N	F _{1,10} = 3.8, <i>p</i> = 0.08						5.9 ± 0.06 0.04 ± 0.01 0.20 ± 0.04 0.13 ± 0.08	6.0 ± 0.05 0.06 ± 0.01 0.35 ± 0.08 0.27 ± 0.06
NH4 ⁺ -N PO4 ³⁻ -P DOC DON	F _{1,10} = 11.6, <i>p</i> < 0.01						0.08 ± 0.01 8.8 ± 1.3 13.2 ± 0.51 1.2 ± 0.08	$\begin{array}{c} 0.12 \pm 0.02 \\ 20.7 \pm 3.9 \\ 16.8 \pm 2.3 \\ 1.5 \pm 0.15 \end{array}$
MBC MBN MBP	$F_{1,10} = 3.9, p = 0.08$						3.3 ± 0.77 0.16 ± 0.06 1.1 ± 0.46	5.3 ± 0.40 0.33 ± 0.08 1.4 ± 0.54
60 cm	Seasonal change	Winter	Early snowmelt	Late snowmelt	Spring	Bud-break	Summer	Autumn
depth		(126-139)	(146)	(159)	(173)	(182-183)	(203-209)	(229-234)
pH Total N Total C NO₃'-N NH₄+-N PO₄³-P DOC DON MBC MBN MBP								$\begin{array}{c} 6.1 \pm 0.04 \\ 0.05 \pm 0.01 \\ 0.33 \pm 0.12 \\ 0.09 \pm 0.02 \\ 0.88 \pm 0.06 \\ 27.4 \pm 3.8 \\ 12.8 \pm 0.73 \\ 1.6 \pm 0.57 \\ 6.5 \pm 1.7 \\ 0.29 \pm 0.1 \\ \text{N/A} \end{array}$

Table S9. Biogeochemical properties within each soil layer down the thawing soil profile throughout the winter-spring-summer-autumn periods in low Arctic mesic birch hummock tundra near Daring Lake, Northwest Territories, Canada. The sampling times are divided into seven periods: Winter, two separate May-samplings before any thaw; Early snowmelt, sampled on the first day of mean diurnal air temperatures above 0 °C; Late snowmelt, sampled at complete snowmelt; Spring, two weeks into the snow-free season; Bud-break, the transitional period between spring and summer where new leaves emerge and most deciduous shrub productivity begins; Summer, mid-July sampling; and Autumn, late-August when senescence became apparent (Julian days shown in parentheses). Total soil N and C are % dry weight soil; and nitrate-N (NO3⁻ -N), ammonium-N (NH4⁺-N), phosphate-P (PO4³⁻-P), dissolved organic C (DOC) and N (DON), and microbial biomass C, N, and P (MBC, MBN, and MBP, respectively) are all μ g g⁻¹ dry weight

soil. Values are means ± 1 S.E., and statistical results ($p \le 0.1$) of linear mixed models with season as the fixed main effect are shown (n = 6-42 per depth interval, decreasing from the surface downwards, see Figure 1). Grey shading indicates soil samples that were frozen when sampled and N/A indicates values below detection limit (i.e. effectively zero but to be conservative, these values have been omitted).

Category of research-	Details of the research-	Environmental impacts	Measure taken to reduce	
associated activity	associated activity	of the activity that may	those environmental	
	necessary to complete the	be avoidable	impacts	
	study			
Travel	Travel from Queen's	Greenhouse gas emissions	Travelled from Kingston-	
	University in Kingston to	associated with Kingston-	Toronto airport by	
	Toronto airport (~250 km)	Toronto flights.	commercial passenger bus	
	for commercial flight to		instead of flying.	
	Yellowknife.			
Travel	Chartered air travel from	Greenhouse-gas (GHG)	Maximized the number of	
	Yellowknife to the remote	emissions associated with	passengers per flight, and	
	tundra research field-site at	each charter flight in and	minimized the total number	
	Daring Lake each summer	out of camp.	of flights by careful,	
	for various science		ongoing, scheduling	
	research groups including		coordination of travel plans	
	multiple universities and		among the different	
	government scientists.		research groups.	
Supplies use –	Acquisition of chemicals	GHG emissions	Bought chemicals in bulk	
chemicals	needed to make reagents.	associated with packaging	where possible and divided	
		and shipping.	into aliquots each with a	
			safety chemical	
			identification label.	
Supplies use – pipette	Contamination is a large	Resource use as well as	Ordered pipette tips in bulk	
tips and plastic	concern in molecular and	waste associated with	bags that were stacked into	
containers and tubes	microbiology research, and	packaging and shipping of	reused plastic boxes and	
for use in molecular	so lots of single-use new	pipette tip and other	autoclaved	
biology research	plastic products such as	plastic products.		
	pipette tips, vials,		Decontamination washing	
	centrifuge tubes and PCR	Energy use associated	and autoclave-sterilization	
	tubes are used. Certain	with autoclaving and	of plastic (Falcon) tubes for	
	types of pipette tips are	incineration during	re-use; substitution of	
	supplied pre-packaged in	processing this lab plastic	single-use microbiology	
	plastic sealed boxes, which	waste.	items with reusable ones;	
	creates further waste.		careful experiment	
			planning that specifically	
			includes the goal of	

			reducing single-use items	
			(Alves et al., 2020).	
Supplies use – purified	Deionized-distilled water	Fossil fuel energy	Used an in-lab still for pure	
water	required for stock	required shipping and	water. Such stills can also	
	solutions.	manufacture of the plastic	be shared between labs,	
		involved in packaging	reducing overall costs as	
		deionized-distilled water,	well as environmental	
		as well as in shipping pre-	impacts of acquiring	
		made solutions that would	commercially prepared	
		be required in place of	pure water.	
		lab-made stock solutions.		
Supplies use – sample	Collecting soil samples for	Clean plastic sealable	Rinsed and washed and	
bags	subsequent chemical	heavy-duty freezer sample	ethanol-sterilized emptied	
	analyses.	bags are an oil-product	sample bags for re-use	
		and their production	where possible.	
		entails GHG emissions.		

Table S10. Specific measures deliberately taken by the authors to reduce the environmental impacts of the activities associated with completing the science reported in this study. For details on how to report such measures, see Grogan, P. (2021) Raising awareness of science's environmental footprint. *Frontiers in Ecology and the Environment* **19**:143-143.

Figure S1. Illustration of the soil sampling methodology. The study area ($20 \times 15 \text{ m}$) was staked out in low stature mesic birch hummock tundra, from which we sampled up to four frozen chunks when surface soils were frozen, or three replicate pits ($0.4 \times 0.4 \text{ m}$) when surface soils were thawed, per sampling time point. Separate pits over successive seasonal time points were dug at least 1.5 m apart, with replicate pits sampled within the same time point usually being further away. The inserts illustrate two different sampling times (with pits labelled 1A, 1B, and 1C and 2A, 2B, and 2C, respectively).

Figure S2. Illustration of the sampling design to collect samples vertically down the soil profile during sampling campaigns in 2012 (left; summer and autumn) and 2013 (right; winter through spring and bud-break). Grey shading represents the seasonal development of the thawing soil active layer, and white and black circles indicate sampling depths and corresponding soil thermal status (frozen and thawed, respectively) at each sampling time. Blue arrows indicate sample-pairs that were directly compared in our temporal analyses and which were sampled in succession within-year, while the red box show the only sample-pair where the comparison was performed "backwards" across sampling years (see Figures 7 and 8). All other analyses are concerned with frozen vs. thawed soil state, which are different from temporal change.

Figure S3. Soil biogeochemical properties down the thawed active layer and in the permafrost transition zone in late August (n = 6-7 for each of these soil depths, see Figure 1). Soil properties include total C (a), C/N ratio (b), pH (c), phosphate (PO_4^{3-}) (d), nitrate (NO_3^{-}) (e), ammonium (NH_4^+) (f), dissolved organic C (g), and N (h), and pH (i). Values are means ± 1 S.E. and although some values in the deeper soil intervals are too small to be visible in the figure, none of these were below detection limit. Results of linear mixed models with soil depth as fixed main effect are shown inside each panel.

Figure S4. Changes in microbial biomass C, N, and P concentrations and ratios with soil depth as measured in the late August soil profile samples (n = 6-7 for each of these soil depths, see Figure 1). Soil properties are MBC (a), MBN (b), MBP (c), MBC/N (d), MBC/P (e), and MBN/P (f). Values are means ± 1 S.E. and although some values in the deeper soil intervals are too small to be visible in the figure, none of these were below detection limit except for MBP at 60 cm depth (i.e. effectively being zero but conservatively we omitted these data, including MBC/P and MBN/P at this depth). Results of linear mixed models with soil depth as fixed main effect are shown inside each panel.

Figure S5. Daily mean air (150 cm aboveground) and soil temperatures (at 5, 25, 40, and 60 cm depths) (a) and diel soil temperature amplitudes (highest – lowest hourly temperature) (b) from May to September 2013 in low Arctic birch hummock tundra at Daring Lake, North West Territories, Canada. Data are from an eddy-covariance flux tower situated in broadly similar low shrub vegetation within 2 km of our study site.

Figure S6. Soil volumetric (liquid water; %; top panel) and gravimetric (liquid plus frozen water; g H₂O g⁻¹ dry weight soil; bottom panel) water content from May to September 2013 in low Arctic birch hummock tundra at Daring Lake, Northwest Territories, Canada. Volumetric water was measured by a handheld probe (see Methods) adjacent to each soil sample, and gravimetric water was determined for each soil sample by drying (n = 4-6 per soil depth at each sampling time).

Figure S7. Bacterial phylotype richness (number of ASVs) in frozen and thawed soils (the latter were sampled approximately three weeks after thaw) of each sampling depth interval (n = 7-12 for each of these soil depths over the two sampling times, see Figure 1). Phylotype richness was calculated using rarefied samples (13,000 total sequences per sample).

Figure S8. Bacterial phylogenetic (Faith's) diversity in frozen and thawed soils (the latter were sampled approximately three weeks after thaw) of each sampling depth interval (n = 7-12 for each of these soil depths over the two sampling times, see Figure 1). Phylogenetic diversity was calculated using rarefied samples (13,000 total sequences per sample).

Figure S9. Principal coordinates analysis of Bray-Curtis compositional dissimilarity distances in bacterial community structure in frozen and thawed soils (the latter were sampled approximately three weeks after thaw) of each sampling depth interval (n = 7-12 for each of these soil depths over the two sampling times, see Figure S2). The *adonis* function in qiime2 was used to determine statistical significance between bacterial communities across soil thermal states.

Figure S10. Temporal variation in the relative abundance of ASVs within each soil layer down the thawing soil. ASVs at or above 1.5% relative abundance are shown. Once an ASV reaches the threshold (1.5%) in at least one sample, the abundance in all samples is shown, even if below the threshold. ASVs are sorted on the y-axis by Phylum association (Patescibacteria (Pat), Verrucomicrobiota (Ver)) and each ASV taxonomic affiliation is followed by an ASV number. The sampling times are divided into seven periods; see Table S8 and Methods for details. Light blue shading indicates soil samples that were frozen when sampled.

Figure S11. Depth-related variation in the relative abundance of ASVs within each season. ASVs at or above 1.5% relative abundance are shown. Once an ASV reaches the threshold (1.5%) in at least one sample, the abundance in all samples is shown, even if below the threshold. ASVs are sorted on the y-axis by Phylum association (Patescibacteria (Pat), Verrucomicrobiota (Ver)) and each ASV taxonomic affiliation is followed by an ASV number. The sampling times are divided into seven periods; see Table S8 and Methods for details. Light blue shading indicates soil samples that were frozen when sampled.