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Abstract—Neuromorphic photonic integrated circuits over sil-
icon photonic platform have recently made significant progress.
Photonic neural networks with a small number of neurons have
demonstrated important applications in high-bandwidth, low la-
tency machine learning (ML) type signal processing applications.
Naturally an important topic is to investigate building a large
scale photonic neural networks with high flexibility and scalabil-
ity to potentially support ML type applications involving high-
speed processing of a high volume of data. In this paper we
revisited the architecture of microring resonator (MRR) -based
non-spiking and spiking photonic neurons, and photonic neural
networks using broadcast-and-weight scheme. We illustrate ex-
panded neural network topologies by cascading photonic broadcast
loops, to achieve scalable neural network scalability with a fixed
number of wavelengths. Furthermore, we propose the adoption
of wavelength selective switch (WSS) inside the broadcasting loop
for wavelength-switched photonic neural network (WS-PNN). The
WS-PNN architecture will find new applications of using off-chip
WSS switches to interconnect groups of photonic neurons. The
interconnection of WS-PNN can achieve unprecedented scalability
of photonic neural networks while supporting a versatile selection
of mixture of feedforward and recurrent neural network topologies.

Index Terms—Silicon photonic neural network, neuromorphic
photonic computing, wavelength selective switching.

I. INTRODUCTION

R ECENT advancements in silicon photonic manufacturing
have created an unprecedented opportunity to produce
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Fig. 1. Biological neuron (left) and its mathematical representation (right).

large-scale, low-cost photonic integrated circuits (PICs) in high
volume. Neuromorphic photonic computing, inspired by the
human brain’s architecture of interconnected neurons that are
capable of processing information much more efficiently than
existing approaches, has attracted strong attention and made sig-
nificant progress recently. In Fig. 1, we see the biological neuron
with a model of how the signals are processed. Each individual
neuron receives multiple input signals from the outputs of other
neurons, applies independent weights to each of those inputs,
sums the inputs, and performs a nonlinear operation to that sum
before sending the output to many other neurons. This way of
processing information is efficient because each operation is
completed in a parallel, distributed manner. Photonic neural net-
works can achieve over 100x energy efficiency improvement and
1000x latency improvement in comparison with performance
projections for electronic counterparts [1]. In comparison with
neuromorphic electronics, neuromorphic photonic systems can
operate in nanosecond time scale, or six orders of magnitude
faster in some cases [2].

With the proliferation of optoelectronic components on pho-
tonic integration platforms, research in neuromorphic photonic
computing has flourished, and machine learning and artificial
intelligence (AI) algorithms running on such hardware platforms
can potentially address a broad range of applications, such as
medical diagnosis, telecommunications, and high-performance
and scientific computing [3]. Recently, an on-chip photonic-
electronic neural network comprising of a few neurons was used
in a system level experiment to compensate high-bandwidth op-
tical signal nonlinear distortions in real time after long-distance
undersea transmission [4]. We expect that photonic neural net-
works employing a small number of neurons will be further
developed, packaged, and find more applications especially in
continuous time series data processing [5].

Meanwhile, the fabrication platform for silicon photonic
circuits have the capability of building large scale integrated
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circuits. For wavelength division multiplexing (WDM) type
integrated photonic neurons using microring resonator (MRR)
weight banks, broadcast-and-weight architecture was pro-
posed [6] and demonstrated [5], and multi-level broadcast-and-
weight loops can be cascaded to further improve the scale of the
network using a fixed and limited number of WDM wavelengths
(considering less than 100 WDM wavelengths). Such architec-
ture has been shown to be very friendly for integration [7].
When a large number of photonic neurons is interconnected
to form multi-level broadcast-and-weight loops, one decision is
the choice of network topology for an artificial neural network.
In the current ML and AI application using neural networks,
there have been different types of neural networks demonstrated
most suitable for different data types and applications. To further
expand the flexibility of broadcast-and-weight architecture, a
wavelength selective switch (WSS) and optical coupler pair is
inserted to the broadcast loop of the broadcast-and-weight archi-
tecture. We call this architecture wavelength-switched photonic
neural networking (WS-PNN). Using multiple available ports,
WS-PNN can be dynamically reconfigured to form different
network topologies, and support a mixture of feedforward and
recurrent neural networks with high flexibility. Here the WS-
PNN is envisioned to be deployed with off-chip, interconnect-
ing integrated individual broadcast-and-weight photonic neural
networks.

The rest of this article is structured as follows: Section II
discusses two types of photonic neurons: non-spiking type with
a microring modulator and an external light source, and spiking
neuron using excitable lasers. Section III presents broadcast-
and-weight photonic neural networks and their topologies,
including single-group and two-group photonic neurons. In
Section IV, we show our novel WS-PNN and describe possible
neural network reconfigurable topologies. In Section V, we
discussed relevent key enabling technologies.

II. PHOTONIC NEURONS

Photonic neural networks have been demonstrated in different
platforms, including free-space holographic neural network [8],
[9], optical fiber based neural network [10], [11], diffractive
optics [12], [13], [14], and integrated photonic circuits [15],
[16], [17]. Here we focus on the WDM-compatible integrated
silicon photonic neural networks using non-spiking and spiking
neurons, shown in Fig. 2.

The key functions of each neuron include three parts: inde-
pendent weighting of multiple inputs, summation, and nonlinear
transformation. These operations can be mapped and imple-
mented on a silicon photonic integrated circuit using MRRs as
shown in Fig. 2.

A. Weighting

The multiple input signals are encoded over the intensity of
lightwave at different wavelengths. Each wavelength represents
the signal from a different pre-synaptic neuron. These signals are
combined and coupled into a single waveguide passing through
microring weight banks [18], [19]. Each of the micro-ring res-
onators is designed to resonate with each input wavelength and
control its weight independently by fine tuning the resonance

Fig. 2. Silicon photonic neuron implementation using microring resonator
weight bank. (a) non-spiking neuron using an external laser source and a
microring modulator and (b) spiking neurons with excitable laser.

to change the transmission. The microring weight bank is im-
plemented with in-ring N-doped photoconductive heaters [20]
in the recent works [19], [21], [22]. Tait et al. [21] developed a
feedback control mechanism to thermally tune the microring by
adjusting the electrical current applied to the N-doped heaters.
This technique has been demonstrated to perform continuous,
multi-channel control with accuracy over 8 bits [22], [23], which
is comparable to the resolution of matrix multipliers used in DSP
ASICs.

B. Summation

The weighted optical signals after the microring weight bank
are split into two output ports, corresponding to the through
and drop ports of MRR, and the two output ports are optical-
to-electrical (OE) converted by balanced germanium-on-silicon
photodetectors (PDs) [24], which linearly transform the sum of
the optical signals to photocurrent.

C. Nonlinear Transformation

The main design difference between a non-spiking and a
spiking neuron is the nonliear transformation. The photocurrent
is sent to a silicon micro-ring modulator (MRM) [15] as input to
a non-spiking neuron as shown in Fig. 2(a), or drive a excitable
laser [7] for a spiking photonic neuron as shown in Fig. 2(b). A
non-spiking neuron can leverage the silicon photonics platform
by integrating the weight bank, balanced photodetectors, and
microring modulator on the same chip in scale, and external
laser sources in different WDM wavelengths can be combined
and amplified and coupled to the silicon photonic chip. In order
to take advantage of silicon photonics fabrication platform, a
spiking photonic neuron can be developed using both silicon
photonics for microring weight banks and possible balanced
photodetector, and group III-V semiconductor material for ex-
citable lasers, with co-integration.

Due to the carrier-induced nonlinear effect, a MRM will
provide the nonlinear activation to the optical pump signal. This
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Fig. 3. Architecture of an integrated broadcast-and-weight photonic neural
networks and its topology. Each of the photonic neuron has the design of either
the nonspiking or spiking neurons shown in Fig. 2. Each MRR is tuned for
one specific wavelength of the input signals between the on- and off- resonance
states to determine the power splitting ratio between the two input ports to the
balanced photodetector. MUX: wavelength division multiplexer.

mechanism shows the working principle of a neuron node on
a silicon photonic circuit. The optical output of the MRM can
be further sent to other photonic neuron nodes to form a net-
work system. The microring modulator performs the nonlinear
activation function. A photonic neuron will receive a combined
photocurrents generated by the attached balanced photodetector,
which results in the modulation of an MRM’s transmission via
free-carrier injection to the p-n junction. Thereby, if an extra
optical source is provided and sent the input port of a MRM, the
optical power will be modulated nonlinearly due to the electrical-
to-optical transfer function. This nonlinear transfer function has
been experimentally demonstrated to be programmable with
different bias currents to the p-n junction of a MRM [15].

The distributed feedback (DFB) laser shown in Fig. 2(b)
is based on a multi-quantum well (MQW) ridge-waveguide
structure, electrically pumped with a p-n junction. It contains
an active small section and an active large section, which are
isolated by etching the p-section. The two sections are grounded
to a metal pad on the chip, and each section connects to different
metal pads for independent current injection. The photocurrent
generated by the photodetectors flows in and out of the large
section of the DFB laser, resulting in pulse-like perturbations to
the laser cavity [7].

III. BROADCAST-AND-WEIGHT PHOTONIC NEURAL NETWORKS

Currently, the most common photonic neural network de-
sign and implementation uses a broadcast-and-weight architec-
ture [6], in which the input signals representing signals from
other neurons are at different wavelengths, and the output is
at a single wavelength. This architecture combines the out-
puts of multiple photonic neurons through wavelength divi-
sion multiplexing and broadcast the signal to all the receiv-
ing ports of photonic neurons. This all-to-all interconnection
follows a recurrent neural network (RNN) topology, as shown
in Fig. 3 [18]. Incoming WDM signals are weighted by re-
configurable, continuous-valued filters called photonic weight
banks and then summed by total power detection. The electrical
weighted sum then modulated the corresponding WDM carrier
through a nonlinear dynamical electro-optical process. Previous
work on MRR weight banks have established a correspondence
between weighted addition operations and integrated photonic

Fig. 4. (a) Broadcast-and-weight photonic neural network with two groups
of photonic neurons. Each group of the neurons has the same set of output
wavelengths (λ1, λ2,..., λN). (b) Topology. The group neurons have feedforward
connections with a loop back for recurrent connection.

Fig. 5. (a) Broadcast-and-weight photonic neural networks with two groups of
photonic neurons, and within each group, a partial number of neurons (λx+1, ...,
λN) are looped back for recurrent connection. (b) Topology. The group neurons
have a mixture of feedforward and recurrent connections.

filters. In [5], MRR weight banks were demonstrated within a
broadcast-and-weight protocol and experiments.

With broadcast-and-weight architecture, Fig. 3 also shows the
topological view of the neural node, and all the nodes have full
recurrent connection with every nodes (including the node itself)
through a single wavelength, which can be tuned continuously
and independently. However, a single broadcasting loop will
have limits on the number of photonic neurons, possibly due
to (1) the limit number of stable wavelengths which can be
deployed on a single photonic chip, (2) the optical power budget
limited by the optical power splitter and the availability of optical
gain, (3) the number of MRRs which can be integrated on a
MRR weight bank. For a large scale photonic neural network,
the broadcast-and-weight architecture proposes connecting each
broadcast loop so that different loops can reuse the same set of
wavelengths, similar to a cellular network in telecommunica-
tions [6], [7].

Fig. 4 and 5 show two examples of cascading broadcast-and-
weight loops to form a larger photonic neural network, using
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two groups of photonic neural networks. For simplicity, group
1 and group 2 have the same number of photonic neurons using
the same set of wavelengths (λ1, λ2,..., λN). In Fig. 4, Group
1 and Group 2 of photonic neurons are connected to form one
broadcast-and-weight loop, and the photonic neurons form a
recurrent-feedforward neural network (RF-NN). The outputs
from the Group 1 neurons at different wavelengths (λ1, λ2,...,
λN) are combined, and connected to the input optical coupler
(power splitter) of the Group 2 neurons. Since the Group 2
neurons use the exact same set of wavelengths as the Group
1 neurons and pass through the same multiplexer (MUX) and
power splitter, the integrated device design will be the same.
Such cascading schemes can extend to multiple stages to form
multi-layer feedforward neural networks, and the loop back of
the output from the last group of neurons to the Group 1 input
(input port of the power splitter) is optional to form recurrent
neural networks. Fig. 5 shows an extension of Fig. 4, having
a partial number of neurons in each group to connect with a
neighboring group.

IV. PHOTONIC NEURAL NETWORKS WITH WAVELENGTH

SELECTIVE SWITCHING

In section III, we reviewed the current implementation of
the broadcast-and-weight architecture, showing how multiple
broadcast loops reuse the same set of wavelengths to support
scalable photonic neural networks. In this section, we propose
scalable and flexible photonic neural networks using WSS. With
WSS, a set of WDM wavelengths can be dynamically switched
from one input port to multiple output ports [25]. WSS has
been one of the key optical networking devices broadly used
in telecommunication networks [26]. WSS can be built with
micro-electromechanical systems (MEMS), liquid crystal or sil-
icon photonics [26]. Fig. 6 and 7 show two types of WSS-based
photonic neural network interconnection architecture: selected
transmission and combining (STAC) model and broadcast and
selection (BAS) model, respectively. Both STAC and BAS mod-
els use one WSS and one optical coupler (OC), but differentiate
in having the WSS or OC at the input or output side of the
photonic neural networks.

A. STAC Model

The combined outputs from the photonic neurons (λ1, λ2,...,
λN) are multiplexed through a wavelength multiplexer (MUX)
and sent to a WSS. Among the multiple output ports of the
WSS, one of the ports (e.g. Port 1 in Fig. 6(a)) is looped back
and connected to one of the input port of the optical coupler
(e.g. Port 1 in Fig. 6(a)). The WSS is configured to allocate the
different wavelengths to different output ports 1, 2, 3,..., M. The
wavelength configuration of the WSS will decide the types of
neural networks on a specific PNN chip: (1) When the WSS
configures all the wavelengths to the WSS output port 1, all the
channels will be looped back to the input of photonic neurons
on the same chip. Therefore, a broadcast-and-weight loop is
formed. (2) When the WSS configures all the wavelengths to
be away from WSS output Port 1, no output from the photonic
neurons from the same chip is looped back. Therefore, a single

Fig. 6. (a) Photonic neural networks with wavelength selective switching
(WSS): selected transmission and combining network (STAC) model. The
combined wavelengths (λ1, λ2,..., λN) from the output of the photonic neurons
can be switched to any output ports of the WSS, 1, 2,... M. Port 1 of the WSS
is connected to the Port 1 of the optical coupler (OC) for recurrent connection.
Here we set the WSS and the OC have the same number of port count, which is
not necessarily needed in general network architecture of neural networks. The
ports 2 to M of the WSS and OC are used for interconnecting with other photonic
neural networks, which can have the same or overlapping set of wavelenghts.
(b) In the selected transmission and combining network model, one photonic
neural network chip (e.g. PNN Chip X) will receive selected channels from itself
through WSS port 1 and other connected PNN chips (1, 2, 3 in the figure), and
the OC of PNN chip X combines all the channels as the input to the photonic
neurons within PNN chip X. All the WSS switches which have output ports
connecting with the OC port of PNN Chip X (PNN chip 1, 2, 3 and X) need to
set to avoid wavelength allocation contention.

layer of neural networks is formed. (3) In general cases, the WSS
can configure some of the output channels to port 1 and other
channels to Port 2, 3,..., M. A partial recurrent neural network
is formed through WSS Port 1 and OC Port 1 connection, and
the rest of neurons are connected with other PNN chips.

B. BAS Model

The combined outputs from the photonic neurons (λ1, λ2,...,
λN) are multiplexed through a MUX and sent to an optical
coupler. The optical coupler splits the multi-wavelength optical
signals to its multiple outputs, port 1, 2, 3,..., M. And each of the
OC output port carries the signals from all the photonic neurons
on the same chip. One of the OC output ports (e.g. Port 1 in
Fig. 7(a)) is looped back and connected to the Port 1 of the WSS
which is put on the input side of the photonic neural network.
In the BAS model, the input ports for the WSS (Port 1, 2, 3,...,
M) receive multi-wavelength signals from the photonic neural
networks on the same chip and from other connected chips, as
shown in Fig. 7(b). The WSS on PNN Chip X is configured to
choose what sets of wavelengths from each input port to pass and
combine them for the input to the photonic neural networks on
this chip. The WSS can be configured similarly as in the STAC
model to achieve photonic recurrent neural networks, a single
layer neural network or a mixture.
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Fig. 7. (a) Photonic neural networks with WSS: broadcast and select network
(BAS) model. The combined wavelengths (λ1, λ2,..., λN) from the output of the
photonic neurons are broadcast to itself and other connected neurons through
an optical coupler. The each of the input port (1, 2, 3,..., M) receives broadcast
signals, each carrying multiple wavelengths, such as λ1, λ2,..., λN. The WSS will
be configured to choose the passing wavelengths for each input port, by avoiding
wavelength contention, and send the combined signals to the weight banks of
each neuron. (b) In the broadcast and select network model, one photonic neural
network chip (e.g. PNN Chip X) will have access to the all the output channels
of the PNN Chips connected to its WSS input ports, and a single WSS on PNN
Chip X can configure the wavelengths to avoid contention.

C. Comparison of STAC and BAS Models

As described above, the STAC model and the BAS model are
able to operate the same way to configure the photonic neural
networks and their interconnections. However, there exists some
difference which can have important implications for network
configuration and applications. (1) In the STAC model, WSS on
the output side of the photonic neural network selects channels
for each connected PNN chip, and the OC at the input side of
the photonic neural network combines all the received channels.
WSSes for different PNN chips should be configured jointly to
avoid wavelength contention, which happens when two signals
at the same wavelengths are combined and reach the same port.
In the BAS model, a single WSS on the input side of the photonic
neural network on one chip can be configured to effectively
avoid wavelength contention. (2) In the BAS model, all the
output signals of a photonic neural network are broadcast to
a number of other photonic neural networks on different chips.
While in the STAC model, only selected channels are sent to the
intended photonic neural networks on different chips. When a
large number of PNN chips are interconnected to form a large
scale neural network to dynamically support different users, data
broadcasting schemes may be regarded as being less secure and
demand extra measures, such as switching on/off particular links
to avoid broadcasting output signals to untended neural networks
or PNN chips.

D. Interconnected Two Wavelength Switchable Photonic
Neural Networks

The WSS-based STAC and BAS network architecture form
the basic element for a WS-PNN. Considering similarity in

Fig. 8. (a) Two WS-PNN chips are interconnected through WSS and optical
couplers. The two PNN chips are identical in having the same number of neurons
with the same set of wavelengths, (λ1, λ2,..., λN). The two WSSes select the
same subset of the wavelengths to interconnect the two PNN chips. (b) The
architecture supports a mixture of single-layer and two-layer recurrent neural
networks.

the functions of STAC and BAS models, we will only use
the STAC model to show the different WS-PNN architectures,
and interconnect WS-PNN circuits to form large-scale, flexible
neural networks.

The output ports of the WSS and the input ports for the
optical couplers can be used to interconnect with other WS-
PNNs. In Fig. 8(a), we use two identical WS-PNNs, which have
the same number of neurons on the same set of wavelengths,
to be interconnected through the Port 2 of WSS and optical
couplers. The two WSSes select the same set of wavelengths
(λx+1, ..., λN) for interconnecting two broadcasting loops. Since
each wavelength represents a specific photonic neuron within
a loop, the WSS basically selects the photonic neurons (called
interfacing neurons) to interconnect with neurons in other loops.
In order to avoid wavelength contention, the two wavelength
selective switches should have the same wavelength switching
settings. In general, when multiple wavelengths which represent
multiple neurons are selected to go through the Port 2 of the WSS
and OC to interconnect with the other WS-PNN, the network
topology shows a mixture of feedforward and recurrent neural
network connections, as shown in Fig. 8(b).

To better understand the configuration of various neural net-
work configurations using WSS, we will show the evolution
of two WS-PNNs interconnection with zero, 1, multiple, all-
channel interfacing wavelengths or neurons.

1) Zero interfacing wavelength when the WSSes on both
WS-PNNs assign all the wavelengths to output Port 1, there
is zero interfacing wavelength, and both WS-PNNs function as
two independent broadcast-and-weight loops.

2) One interfacing wavelength when the WSSes on both WS-
PNNs assign one wavelength (e.g. wavelength X) to output Port
2, one neuron (neuron X) from each WS-PNN is connected with
the other WS-PNN, basically forming a swapping connection
through one pair of photonic neurons on the two WS-PNN chips.
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Fig. 9. Four WS-PNN chips are interconnected to form a ring. In this particular architecture, the WS-PNN chips are interconnected using the same ports and the
same set of wavelengths.

For better understanding, the input signals of neuron X on PNN
chip 1 are a combination of the output signals from neurons on
PNN Chip 1 (excluding neuron X signal), and the wavelength X
signal from PNN chip 2. Therefore, Neuron X on the two PNN
chips effective carries the information from the chip it resides
and sends it to the other chip it is interconned with.

3) Multiple interfacing wavelengths Similar to the case of one
interfacing wavelength, multiple neurons from each PNN chip
carrying the information from the local neural networks and
the other neural networks become interfacing neurons. With
multiple interfacing wavelengths, these neurons can form a
multi-layer neural netwok, shown in the lower part of the neural
networks in Fig. 8(b). With increasing number of wavelengths
used to interconnect the two PNN chips, the neural networks
can migrate to have smaller size of single-layer recurrent neural
networks and larger size of two-layer recurrent neural networks.

4) All-channel The WSSes on the two PNN chips can config-
ure all the wavelengths to pass through Port 2, and therefore
a new two layer recurrent neural network is formed. When
one of the two WSS-OC links between the two PNN chips is
disconnected, a simple two layer neural network is built, and
can be further connected with other PNN chips in the same way
for multiple-layer neural networks.

E. Interconnected Four and Multiple Wavelength Switchable
Photonic Neural Networks

The WS-PNN architecture enables a flattened neural network.
Fig. 9 shows four WS-PNN chips interconnected to form a ring,
in which ports 2 of PNN chips are interconnected using the
same set of wavelengths, and Fig. 10 shows the topology, which
shows a multi-layer feedforward and recurrent neural network
architecture. The four WS-PNNs in Fig. 9 can be connected with
different topology, such as a mesh, and three ports from the WSS

Fig. 10. The neural network topology of the photonic neurons interconnected
in Fig. 9. A multi-layer feedforward neural network is formed within the topology
and mixed with recurrent connections.

and optical couplers will be used for interconnections, which
can result different combinations of feedforward and recurrent
neural networks.

To further extend the scale of the WS-PNN chip interconnec-
tions, hyper cube topology can be deployed, as shown in Fig. 11.
The dimension of the hypercube architecture is decided by the
number of available WSS ports for interconnection. Each of the
WS-PNN node will have port 1 reserved for direct connection
to support recurrent connection within the WS-PNN chip itself,
and the rest of the WSS and optical coupler ports can form
output-input pairs to connect with other WS-PNNs. For each
of the interconnection link, typically multiple wavelengths are
dynamically assigned based on the intended neural network
topology. In order to avoid wavelength contention, such as
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Fig. 11. Hypercube architecture formed with interconnecting the WSS and
optical coupler ports of WS-PNN chips. Each of the connection can carry
different numbers of wavelengths, indicated by the thickness of the link line
width in the figure. The 3D cube architecture supports flattened scalability of
the photonic neural networks.

Fig. 12. Concept of edge coloring. Each node can be connected with other
nodes using different wavelengths without wavelength contentions.

the same wavelength from two neighboring WS-PNN chips
is assigned to the same receiving WS-PNN chip, wavelength
assignment can not be arbitrary. To avoid the contention, a
wavelength can only be assigned to a WS-PNN at most once. The
problem becomes the edge-coloring problem on a multigraph, as
shown in Fig. 12. A feasible wavelength assignment is equivalent
to an assignment from the colors to the edges of the multigraph
so that no two adjacent edges have the same color–exactly the
edge-coloring problem. The edge coloring is a known problem,
and fast heuristics are known [27] [28]. Libraries implementing
this are publicly available.

V. DISCUSSIONS

Neural networks are the current state-of-the-art for machine
learning and there have been different topologies and layer
types to choose from. Each type of neural network excels at
solving a specific domain of problems, and each is tuned with
hyper parameters that optimize those solutions. When building
a large scale artificial neural network, the flexibility of config-
uring the neural networks to different topologies is important
in supporting a wider range of machine learning applications.
The WS-PNN architecture can support the interconnection of a
large number of photonic neural networks through connecting
multiple PNN chips with off-chip WSS.

A. Wavelength Selective Switches

WSS has been widely used in optical WDM communica-
tion networks to route individual wavelength for network re-
configurability. Micro ring resonator based wavelength switch-
ing architecture has been proposed for wavelength-routed op-
tical networks-on-chip (WRONoCs) applications [29], and
WRONoC leverages WDM and integrated optical circuits for
multiple-processors system-on -chips [30], [31]. MRR-based
WSS devices can be integrated over the same PNN chip to
achieve overall compact size and scalability within the optical
power and attenuation constrain before optical gain is available
on silicon photonic chips. In addition, off-chip WSS devices can
also be an attractive solution when considering the availability
of low-cost off-chip optical gain from optical amplifiers. As an
example, the free-space WSS components in [32] can have>100
WDM channels at 50 GHz channel spacing and incur insertion
of about 4 dB [32]. With a k+1-ports WSS (one port is referred
to the input port), one output port is reserved to connect with
one of the input ports of optical coupler for the broadcasting
loop within the same chip, and the rest of the k-1 ports are
used for interconnection with other chips. In the hypercube
architecture k = 7 can support flattened scaling in 6 directions
(up, down, north, south, east and west). Depending on the
technology platform, MEMS-based WSS can reach switching
speed of a few milliseconds. A future WS-PNN system can
consist of a switching matrix made of WSS and broadband
optical amplifiers with a number of optical interface ports, and
each of the PNN chip is packaged into line card type and plugged
into the switching matrix.

B. Fault Tolerance

In a large scale photonic neural network, the key optical
components can be 50 times the number of neurons, considering
each neuron has a number of MRRs (equal to the number of
wavelength), photodetectors, and MRM or excitable lasers.
High fault tolerance to the optical component and even optical
neuron failures will be critical for running processes which
involve a large number of primitives. With the WS-PNN
architecture, the reconfigurability of the neural networks will
be at the chip level, topology level and photonic neuron level,
in dealing with any failures. In [6], extra backup nodes are
needed for the photonic neural nodes and the interfacing neural
nodes, which increases both the hardware and management
overheads. In WS-PNN architecture, interfacing neural nodes
can be dynamically chosen from any of the photonic nodes
within the broadcast-and-weight loop, which can effectively
eliminate the needs for backup nodes and simplify the nodes
management. In practice, during the WS-PNN system booting
process, the management system runs self-check to identify
and label failed device components and nodes, and the software
algorithm will eliminate the nodes from application use.

C. Connectivity Matrix

From the perspective of neuroscience, the structure of
autonomous and driven networks of spiking model neurons is
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Fig. 13. Structure of (a) autonomous and (b) drive networks. The figure is
taken from [33].

shown in Fig. 13 [33]. Constructing a network requires individ-
ual neuron models and synapses, a pattern of connectivity, and
parameter settings. Relevant tasks defined by neuroscientists
studying spiking neurons include integrating an input over
time, detecting particular temporal input sequences, responding
after a delay or with an activity sequence, or responding with
a temporally complex output, and autonomously generating
complex dynamics. Determining the connection matrix required
to make a network perform a particular task is the classic
credit-assignment problem of network learning. The field of
machine learning has addressed credit assignment by developing
error-gradient-based methods, such as back-propagation. In the
case of spiking neuron networks, there are ways to solve the
credit assignment problem without resorting to gradient-based
procedures in [33], such as the model in [34]

A WS-PNN will generally have a mixture of feedforward
and recurrent neural network. In particular for the recurrent
neural network part, the recurrent time delay can have a large
variance for different topologies: very small delay time (about
10 ps) for the same chip recurrent neural networks, and long
delay time for cross chip recurrent neural networks when the
corresponding wavelnegth goes through the optical switching
matrix. Therefore, the WS-PNN is effectively a weight and
delay neural network. After the intended connectivity matrix
is calculated from one of the algorithms mentioned above, the
WS-PNN software manager will set the topology and the weights
for functional networks.

VI. SUMMARY

With the recent progress in neuromorphic photonic integrated
circuits over silicon platform, buidling a scalable network of
photonic neurons going beyond tens to hundreds of them
through multiple chip interconnection becomes an important
research topic which will have deep impact on the future large
scale neuromorphic computing systems. By including WSS in
the broadcast-and-weight loop, the WS-PNN architecture brings
flexibility in network topologies in addition to unprecedented
scalability. Currently we limit our discussion on employing
WSS off-chip to leverage commerically available WSS

technologies and solutions. Meanwhile, with advancement of
silicon photonic WSS technologies and solutions, WS-PNN
can be integrated on the same chip for compact size. In this
paper, we focus on presenting the novel concept of WS-PNN
and describing the system benefits in flattened scalability and
flexibility by showing selected topologies. We envision future
research work around chip integration, system architecture,
connectivity matrix, and applications.
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