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Abstract: Neuromorphic photonic processors based on
resonator weight banks are an emerging candidate tech-
nology for enabling modern artificial intelligence (AI)
in high speed analog systems. These purpose-built ana-
log devices implement vector multiplications with the
physics of resonator devices, offering efficiency, latency,
and throughput advantages over equivalent electronic
circuits.Alongwith theseadvantages,however, oftencome
the difficult challenges of compensation for fabrication
variations and environmental disturbances. In this paper,
we review sources of variation and disturbances from our
experiments, as well as mathematically define quantities
that model them. Then, we introduce how the physics of
resonators can be exploited to weight and summultiwave-
length signals. Finally, we outline automated design and
control methodologies necessary to create practical, man-
ufacturable, andhighaccuracy/precision resonatorweight
banks that can withstand operating conditions in the
field. This represents a road map for unlocking the poten-
tial of resonator weight banks in practical deployment
scenarios.
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1 Introduction
Most of the recent successes in artificial intelligence (AI)
are tied to the ability to perform an increasingly large
amount of computation on a mathematical representation
of information (i.e., data). In machine learning (ML)
algorithms, data is first rearranged into mathematical
objects called vectors living inside of a vector space.
These vectors can then be manipulated by linear and
nonlinear operations resulting in another vector that can
be translated into a useful result. For example, in an image
classification task the input image is typically encoded into
a vector containing the contents of three 2-dimensional
arrays of numbers representing the intensity values of
red, green, and blue for each pixel. A classifier then
computes a function that maps the image vector into a
classification vector, which is a 1-dimensional array with
each component representing a human-interpretable label
(e.g., cat, dog). In modern AI algorithms, especially deep
neural networks, most of the hardware processing power
in conventional processors is devoted to memory access
for parallel linear operations on vectors [1], resulting in
a limitation as models scaled up in size. Accordingly,
specialized hardware architectures that efficiently perform
linear operations have been introduced to accommodate
the increasing demand for AI. These include GPUs [2], TPU
[3] and neuromorphic processors [4, 5].

In-memory computing and multi-processing tech-
niques are two innovations that have allowed specialized
hardware such asmulti-core CPUs andGPUs to address the
increasing demand for data processing. These techniques,
however, were not a significant enough leap forward to
close the gap between current computing capabilities and
the needs of evolving AI tasks [4, 6], especially for high-
frequency computation with low latency. Brain-inspired,
or neuromorphic, computing schemes have emerged as
a potential alternative for addressing these deficiencies
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in power efficiency and speed. Neuromorphic processor
architectures are optimized on a hardware level to run
neural-network-based algorithms as fast and efficiently as
possible [7]. Such architectures derive these benefits from
the use of analog systems in which the computation is
inherently tied to the physics of the device itself, rather
than defined in software on a generalized digital archi-
tecture. Analog systems, however, must be engineered to
control noise in such a way that the signals of interest
are not corrupted by the processing itself, a task which
is nearly trivial in digital electronics. It is also crucial to
designsystemswhichareuser-transparent andare capable
of interfacing with existing computational systems.

Most optical phenomena are linear, making multipli-
cation and addition operations easy to implement using
photonic devices. Photonic systems can, therefore, benefit
from the body of knowledge in the field of ML, which
has over the decades created algorithms that are heavily
dominated by linear computation. These are directly
utilized in photonic processors that operate using analog
inputs and outputs. As an added benefit, information in
different channels can be encoded onto noninteracting
optical carriers using wavelength-division multiplexing
(WDM) allowing for a high density of signals on a single
waveguide. Utilizing WDM in turn allows for the use of
resonator devices that produce controllable effects only
around their specific resonant wavelength and do not
interact with other optical carriers.

In neuromorphic photonics [8], the device responsible
for linear computation is the weight bank, composed of
a series of resonators with unique resonant wavelengths,
which selectively weights (multiply) a series of incoming
WDM signals [9] and optically sums all of the resulting
light. Various implementations of resonator weights have
been proposed, demonstrated, or leveraged by different
groups over the last few years [9–18]. These are optimized
specifically for real-time weighted summation of high-
bandwidth analog signals encoded ontomulti-wavelength
lightwaves. Summation using photodetectors returns an
analog electrical signal, which can either be read out
directly or used to modulate another optical carrier. This
multivariate processing ability has proven to be particu-
larlyuseful inapplicationswithanalog inputsandoutputs,
suchasmicrowave signal processing, ultrafast robotic con-
trol [19], and neuromorphic computing [20, 21]. It has also
found uses in hardware accelerators for machine learning
applications, even with the overhead of converting
from digital to analog inputs and outputs [11–14, 17].

One of the main engineering challenges facing weight
banks is the ability to precisely and accurately control

weight values, which is made difficult due to fabrication
variations and environmental disturbances. In this paper,
we aim to outline automated methodologies for designing
and controlling resonator weights in order to enable
practical WDM photonic processors. In Sections 2 and 3,
we introduce the necessary background for understanding
and engineering resonator weight banks. Next, in Section
4, we introduce a practical model of weight banks and
a feedforward algorithm that can be used for calibration
and control of real devices. Finally, in Section 5, we
discuss options for designs that allow for compensation
of fabrication variations and environmental disturbances
aswell as a feedback algorithm that can be used if aweight
bank is manufactured with built-in weight sensing. The
aim is toallowreaders todesignsystemsutilizing resonator
weight banks that are robust enough to be brought beyond
laboratory benches and into the field.

2 Weight bank overview

2.1 Matrix–vector multiplication
Tensor operations, which are the core of many machine
learning algorithms, can be implemented via a collection
of matrix–vector multiplications. Matrix–vector multipli-
cations, in turn, are typically decomposed into a number
of vector–vector dot products where the first vector cor-
responds to the rows of the matrix and the second vector
(the vector of the matrix–vector operation) is identical for
all such sub-operations. Hardware units for performing
matrix–vector units can be modularized in the same way,
with the most basic units implementing vector–vector
dot products. Vector–vector dot products can be written
mathematically as

y(t) =
n∑
i=1

𝑤i(t)xi(t) (1)

where x = [x1,… , xn]T is a vector of incoming signal val-
ues,w = [𝑤1,… ,𝑤n]T is a vector ofweight values, and y(t)
is the output. Although x(t) and w(t) function identically
mathematically, we make the distinction between signals
and weights due to the distinct forms that these vectors
take in photonic hardware.

Since this operation is a collection of multiplication
operations with a summation, it is common to refer
to the performance of a system in terms of multiply-
accumulate (MAC) operations [22]. The number of MAC
operations for a particular computation is hardware-
agnostic, although some architectures, such as systolic
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arrays [3, 23], implement MACs directly while others, such
as theWDMarchitecture analyzed in thispaper, implement
weights as individual units and perform all summation
simultaneously.

Many applications involve multiplying a batch of vec-
tors with the samematrix, such as running inference tasks
with input data on a fixed (pre-trained) neural network
classifier. This approach optimizes inference tasks for high
bandwidth signals and low latency results. In such cases,
it can be advantageous to design analog MAC units where
input signals x(t) can be modulated on fast time scales
and are multiplied by “fixed” weights w that only change
on relatively-slow time scales. In general, reconfiguring
optoelectronic weights takes significantly longer than
their optical signal bandwidth capacity. Optical processors
thus need to be codesigned at a system level with an
electronic circuitry that optimizes the decomposition of
matrix–vector multiplications into smaller vector–vector
products while reducing the number of redundant compu-
tations [24].

2.2 Role of individual resonators
Resonator-based weights are specifically designed to take
advantage of wavelength-division multiplexing (WDM), in
which separate signals are encodedonoptical carrierswith
nonoverlapping wavelengths. In optical communications,
multigigahertz signals are modulated as amplitude or
phasechangesonacontinuous-wave (CW)carrier traveling
through a bus waveguide. With WDM, hundreds of CW
carriers with unique wavelengths can coexist in a single
waveguidewithout interferingwithoneanother,effectively
creating many independent information channels within
a single physical channel. An array of resonators, usually
microring resonators, with resonances matching the opti-
cal carrierwavelengths isused toaccesseachchannel inde-
pendently. Each resonator, when in resonance, transfers
all of the optical energy traveling on one waveguide onto
another waveguide. This property is utilized, for example,
to enable compact optical interconnections on photonic
chips for use in telecommunication systems [25]. If the
resonances can be independently tuned, the amount of
energy transferred between waveguides can be controlled
for each channel, resulting in a precise weighting (multi-
plication) of the input WDM signal. Using this scheme for
implementingmatrix–vectormultiplications isdepicted in
Figure 1.

Silicon photonics has emerged as a popular platform
for creating photonic integrated circuits (PICs), owing to
low loss and compatibility with commercial foundries
[26]. Some process design kits (PDKs) are being generated
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Figure 1: Schematic of WDM-based MVM. Each matrix row of size N
corresponds to a weight bank withM resonator weights. At each
point in time, the output of the weight bank corresponds to the
vector dot product between a matrix row and the multiplicand
vector. The higher the bandwidth of the signal x(t), the more
computations this system does per second. By stacking N such
weight banks, N dot product operations can be completed in parallel
without sacrifice to bandwidth.

[27, 28], but optical devices are very sensitive to tem-
perature and fabrication variations. This poses unique
challenges to the design of PICs on top of those usually
associated with analog devices. In the case of micror-
ing resonator filters, this sensitivity can be counteracted
via calibration and control techniques [24, 29]. Early
demonstrations used integrated sensors to coarsely lock
microring resonators on the transmissionwavelength [30].
These involved applying a compensating electronic signal
(either current or voltage) based on a measured property,
mathematical state model, or both. This can be achieved
easily with microcontroller circuits placed in a CMOS
electronic circuit nearby or monolithically integrated on
the same die [31]. Resonator weights, on the other hand,
require more sophisticated control schemes, because the
resonator not only needs to be stabilized near resonance,
but also need to be fine-tuned with a high degree of
accuracy.

3 Resonator weight physics

3.1 Resonator configurations
Thereare twocommonconfigurations forpassive resonator
weights: all-pass and add–drop, consistent with the termi-
nology used in optical filters. In the all-pass configuration,
there is only one waveguide bus coupled to the cavity,
with one input port and one ‘thru’ port at the opposite
end. On the other hand, in the add–drop configuration,
an additional bus waveguide is coupled to the cavity,
with one ‘add’ port and ‘drop’ opposite to add. In each
configuration, the ports are defined relative to the input
port. The ‘thru’ port receives most of the energy from
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the input port, except when the cavity is near resonance.
Near resonance, a significant amount of the input energy
enters the cavity and gets transferred to the ‘drop’ port. For
passive, lossless cavities, all energy from the input port
is divided between the ‘thru’ and ‘drop’ ports, in a ratio
dependent on the input’s wavelength and the coupling
between the bus waveguides and the cavity. In theory,
the goal is to engineer the resonator so that when on
resonance, 100% of the energy drops to the drop port,
andwhen off-resonance, 100%of the energy is transmitted
to the ‘thru’ port. In a lossless resonator, this can be
simply achieved by designing identical couplers between
the all-pass and add–drop waveguides, a condition called
critical coupling.

Inpractice, cavitiesarenotperfectly lossless.Themain
loss mechanisms in silicon photonics are scattering loss
(due to roughness of the waveguide’s walls) and material
absorption. This loss will perturb the critical coupling
condition, causing the power transfer to be unbalanced
and resulting in reduced extinction ratio [[32], Sec. 2]. This
unbalance can be compensated by design if, and only
if, the cavity loss and the coupling coefficients are well
known prior to fabrication. These parameters are defined
by fabrication and cannot be changed. In a completely
passive all-passmicroring resonator, for example, this loss
is so low that engineering the critical coupling condition
is not possible due to fabrication variation.

We can use a simple technique to achieve near-critical
coupling, and therefore acceptable extinction ratios, by
using a symmetric add–drop bus waveguide, even if we
ignore its ports. Because the two couplers are spatially
close to one another, the fabrication variation tends to be
correlated, ensuring their coupling coefficients are similar.
This technique only works if the coupling coefficient is
much higher than the cavity loss. In this situation, the
intrinsic loss of the microring, dominated by the coupling
coefficient to the drop waveguide, automatically matches
the coupling coefficient of the input waveguide, resulting
in a critical coupling condition. However, as we show in
Section 5, sometimes we intentionally modify the cavity’s
waveguide via doping or evanescent coupling, increasing
the cavity loss to a regime that warrants asymmetric
coupling ratios.

The most common example of a photonic resonator is
a microring resonator (refer Figure 2). MRRs are standard
components in integrated photonics used for filtering,
modulation given their simplistic design methodology.
They are ring waveguides where the optical path length,
i.e., ring circumference, determines the resonant wave-
length. By varying the radius, a WDM link with MRRs

Figure 2: Left: Top-down view of the microring resonator (top), and
the photonic crystal nanobeam cavity (bottom) showing the optical
ports and the overlaid area where a tuning element can be placed for
controlling resonance wavelength. Right: Simulated optical spectra
as measured from the thru ports in an add–drop MRR (top) and an
add–drop PhC nanobeam (bottom) fabricated on a silicon photonic
platform. Note that the PhC cavity has a similar resonance feature
but no free spectral range (FSR). The parameters used for the MRR
were taken from Table 1, and for the PhC from Ref. [34].

with various resonances can be designed. Besides the
resonance wavelength, the ring radius also affects the
free-spectral range (FSR) of the cavity,which is the spacing
between adjacent resonator modes. FSR ultimately is the
limiting factor to the channel count of the WDM link.
Sophisticated measures have been employed to avoid
this FSR limit, including grating-embedded MRR [33], etc.
However, these schemes add to the design complexity
and insertion loss. Another way to circumvent this issue
would be using photonic crystal (PhC) cavities. Given the
relatively strict resonance constraints of PhCs, resonance
modes are fewer and can even be engineered to have a
single resonance [34]. Eliminating FSR offers advantages
in termsof channel count,whichmaybekey for large-scale
networks.Nevertheless, the fabrication tolerances of PhC’s
require more expensive fabrication techniques such as
E-beam lithography which poses a question to its scalable
manufacturability.

This article was written with microring resonator
cavities in mind, but all the discussions and modeling
can be applied to any kind of cavity. We have designed a
tool to help engineer MRRs based on known fabrication
parameters and waveguide designs [35] which is also
detailed in Section 7. Table 1 presents example microring
resonator designs useful forweighting, and compares their
predicted properties to measured properties. With no fit to
experiment, the ring properties can be estimated.
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Table 1: Example symmetric add–drop microring resonator designs and their uses.

Device Geometry Simulated (measured) parameters Good for

Type Width (nm) Radius (𝛍m) Gap (nm) Tuning element Thru E.R. (dB) FWHM (nm) Tuning efficiency

Weight 500 8 200 n-doped heater 22 (25) 0.4 (0.4) (0.2) nm/mW Weighting
Modulator 500 8 300 pn junction 13 (15) 0.1 (0.03) (0.01) nm/V High-speed

tuning

Waveguide widths are single-valued across bus and ring waveguide. Doping levels are ∼1017 cm−3 and overlapped with the central portion
of the rings away from the couplers, leading to a propagation loss of roughly 5 dB/cm [36]. Parameters were simulated as described in the
Appendix without experimental calibration. We compare them to parameters extracted from measurements taken from fabricated rings.

3.2 Context
Signals andWeights: In an analog matrix–vector multipli-
cation, there are two kinds of vectors in a weight bank: the
fast vector (x), which typically represents a signal; and the
slow vector, or weight vector (w), which is understood to
bemuch slower thanor stationary compared tox. In digital
hardware, this distinction might seem strange because
both vectors are typically loaded frommemory at the same
rate. In analog hardware, however, it is muchmore energy
efficient to use a slow signal to modulate the amplitude of
another signal in a passive way. In photonics, for example,
a voltage or current-controlled device can modulate the
amplitude or phase of an optical signal, independent of
its bandwidth. This is the first caveat for comparing per-
formancebetweenphotonicmatrix–vectormultipliers and
electronic ones, especially in terms of energy consumption
or speed; in analog computing only one operand can
be switched quickly, whereas in digital electronics both
weight or signal are functionally equivalent.

Onedimension inwhich opticalweights offer aunique
advantage is in the latency of the computation. Many
applications, such asmachine learning, signal processing,
and control, require very high bandwidth input signals
and low latency but can tolerate slowly-varying weights.
For these applications, implementing the MVM in the
optical domain is ideal for twomain reasons. First, passive
optical weights support high bandwidth optical signals
withconstant (sometimeszero)powerdissipation. Second,
the latency between input and output is determined by
the time-of-flight of the lightwave carrier, or nanoseconds
considering resonator andoptoelectronicRC-limitedband-
widths [37].

Applications such as photonic accelerators, where
the computation is offloaded from the CPU to a photonic
tensor processor, would not benefit from this scheme since
weights would need to be updated as fast as the incoming
signals. Doing so imposes a significant energy and speed
cost to the control hardware, and is challenging to do

in a way that maintains the high-bandwidth advantage
of photonics. However, recent works have been able to
marry thehighlyparallel efficient linearity fornonresonant
weight elements, and custom digital electronic ASIC for
accelerating deep neural networks [38]. To date, this
approach has been favored by industry-oriented start-ups.

Analog Summation: At the output of the weight bank
there is a summing element,most commonly implemented
with a photodetector or pair of balanced photodetectors
(cf. Figure 1). Photodetectors generate a photocurrent
proportional to the incident optical power. To first order,
they are linear devices and a WDM system acts as a
multilinear map, meaning that a linear change in each
channel results in a linear change in the output. Realis-
tic photodetectors, however, have nonlinearities at high
optical powers, resulting in a saturation curve. In practice,
this limits the optical power that can be used in a weight
bank. They also typically have nonflat frequency response,
so optical signals modulated at different frequencies but
with same power generate different levels of photocurrent.
Any nonlinear imperfection in the photodetector will con-
tribute to precision and accuracy ‘errors’ in the weighting
scheme.

Analog Subtraction: It is often desirable to implement
negative weights (in addition to positive weights) in order
to allow for the possibility of analog subtraction. Doing so
in a WDM system requires the use of add–drop resonators
along with balanced detectors, as depicted in Figure 1. In
such a case, a channel’s weight value is zero when energy
is evenly split between “thru” and “drop” ports.

Mach–Zehnder interferometer (MZI) Approaches: An
alternative to WDM-based integrated photonic com-
putational techniques are techniques which utilize
Mach–Zehnder interferometers (MZIs) toperformarbitrary
linear operations on a single-wavelength optical carrier
[39]. Individual phase shifters found in MZIs are typically
less sensitive than individual resonators, but process
variations compound across large many-MZI PICs in a
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way that is not usually seen in large many-resonator
PICs. Ultimately, compensating calibration and control
techniques are required for practical deployment in either
case. A discussion of the most common options for
MZI-based PICs can be found in [39].

3.3 Definitions
Normalized Weights: For simplicity’s sake, we introduce
a normalized weight 𝑤̂ ∈ [0, 1]. Conversion between real
weight 𝑤 (as measured by the analog summing element)
and normalized weight can be accomplished via the
equation:

𝑤̂ = 𝑤−𝑤min
𝑤max −𝑤min

(2)

where 𝑤max and 𝑤min are the maximum and minimum
weight values, respectively.

Bit Representation: Before defining error quantities
such as accuracy, precision and resolution, sometimes it
is useful to refer to them in units of ‘bits’. For example, if
the relative error of a measurement is 0.125, or 12.5%, we
can also refer to it as 3 bits, because it takes three digits
to represent that number in binary representation. More
generally, if the error is 𝜀∈ (0, 1], the bit representation can
be computed as 𝜀 (bits)= log2(1∕𝜀)∈ [0,∞). For example,
as the measurement error goes to 0, we say that it has
infinite precision.

Accuracy: In the context of resonator weight banks,
accuracy refers to the systematic error between the com-
manded weight (denoted ŵ) and actual resulting weight
vector (W(ŵ), where W is a random variable for com-
mandedweight ŵ). Here, wemake the distinction between
individual accuracy, which refers to accuracy of any given
individual weight, and ensemble accuracy, the average
accuracyoverall possible individualweights. Fromauser’s
perspective ensemble accuracy is a more useful metric,
since it reflects expected performance in the general case
where weights are unknown ahead of time. Accordingly,
we refer to ensemble accuracy wherever it is not explicitly
stated. In theory, if laboratory conditions stay stationary
over time and instruments are perfectly repeatable, a
perfect calibrationalgorithmwouldyield infinite ensemble
accuracy (zero error). Such an algorithm could visit every
possible commanded weight combination, measure the
effective weight, and construct a lookup table with the
corresponding map. In practice, however, it is desirable to
perform this calibration procedure as quickly as possible
and with a model that is simple enough to implement in a
microcontroller. Ensemble accuracy, therefore, is a metric
that measures the quality of the instrumentation, the
correctness of the physical model, and the efficiency of the

calibration algorithm. Accuracy is definedmathematically
as:

Individual accuracy 𝛿ŵ ≜ ‖‖ŵ− 𝔼[W(ŵ)]‖‖ (3)

Ensemble accuracy ≜

√∑
ŵ∈𝛀

𝛿2ŵ, (4)

where ‖⋅‖ denotes the Euclidean norm, 𝔼[⋅] denotes the
expected value, and∑

ŵ∈𝛀 denotes the average across all
possible weight vectors.

Precision: Precision is complementary to accuracy,
and refers to random error caused by noise in the mea-
surement system or control circuit. This is a challenge in
any analog system. Here, we again make the distinction
between individual precision and ensemble precision, and
in general refer to ensemble precision whenever it is not
specified. In this case, we chose to construct the ensemble
precision so that it includes a contribution from individual
accuracies in order to more closely reflect the user’s
experience. This is intuitively understandable by exam-
ining each limiting case. On one extreme, if all individual
accuracies are infinite (zero error) then random spread of
the ensemble is just the average of individual precisions.
Ontheotherextreme, ifall individualprecisionsare infinite
(no random spread) then one still expects to see spread in
commanded weight values over the entire ensemble due
to finite accuracy. Here, we associate ensemble precision
to an error bound users would expect from a randomly
chosen weight vector. Mathematically, individual and
ensemble precision are defined as:

Individual precision𝜎ŵ ≜
√
Var[W(ŵ)] (5)

Ensemble precision ≜

√∑
ŵ∈𝛀

(
𝜎2
ŵ + 𝛿2ŵ

)
, (6)

with the same notation as in the accuracy definition.
Resolution: Resolution ordinarily relates to the dis-

cretization error of the signals xi(t) or y(t), which is not
to be confused with weight accuracy and precision. For
analog continuous signals, the equivalent terminology
is signal-to-noise ratio, or SNR. In this article, we use
resolution and SNR interchangeably, often expressed in
bits. Because of Eq. (1), the finite precision error of w
causes a degradation in the resolution of y(t). In practice,
weight banks are designed such that the resolution is lower
than the ensemble precision (e.g., 5-bit precision for a 4-bit
resolution), otherwise ensemble precision will determine
the resolution of y(t).

Actuation: Actuation refers to the physical process of
changing a weight. One common actuation mechanism is
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theapplicationof current toamicroheaterneara resonator.
Applied current generates heat, which changes the tem-
perature around the resonator and as a result changes the
weight. The actuationmechanismoften sets an upper limit
on achievable accuracy. For example, consider a resonator
controlled by a typical 16-bit DACwithin a 0–20mA range.
If the resonator needs 2 mA of current to lock to resonance
and 1.5 mA to change the effective weight between −1
and 1, a single LSB of the DAC corresponds to 0.3 μA and
−log2(0.3 μA/1.5 mA) = 12.3 bits is the maximum achiev-
able accuracy. In practice, DAC nonlinearities, parasitic
resistances, andon-chip thermal crosstalk tend todecrease
system accuracy below this upper limit.

Sensing: Sensing is the ability to directly measure
each effective weight independently from the actuation
mechanism. This plays an important role in simplifying
the calibration and control of the weight bank as well as
improving accuracy and reconfiguration speed. The ideal
sensor would be a spectral sensor that would detect the
transmission of each resonator as a function ofwavelength
and map it to a voltage with high accuracy (0–10 V
would be compatible with popular DAC/ADC compo-
nents currently available from chip manufacturers). More
practical sensors measure indirect quantities correlated
with the weight, such as local temperature or circulating
optical intensity. In this case, the relationship must be
incorporated into the calibration and control.

Trimming: Trimming refers to the process of adjust-
ing a physical property of a device to a desired value
with high accuracy. This is necessary because common
microfabrication processes based on photolithography
or e-beam lithography are fundamentally incapable of
producing predictable, identical resonator cavities (thus
resonance wavelengths) by design. For example, a typical
requirement in EDM telecomm systems is a fixed operating
wavelength; say 1545.32 nm (ITU C-band channel 40). A
resonator designed to operate on this channel needs a res-
onancewavelengthaccuracyof0.01nm,which is currently
unattainable by geometric design alone. There are two
main ways of achieving trimming post-fabrication. Active
trimming involvesmeasuring each resonator’s wavelength
in advance and using a control circuit to apply a voltage
or current bias that compensates for fabrication variations.
This approach is referred toas activebecause it requires the
use of external powered circuitry to apply the correction. In
contrast, passive trimming involvespermanently adjusting
the device to the target wavelength via modifications to its
physical properties (e.g., phase-change materials or ion
implantation). Passive approaches are preferred because
they reduce extra control logic and power requirements.

Passive trimming technologies, however, currently require
specific post-processing steps that may not be economi-
cally viable in silicon photonic foundries.

It is worth noting that active trimming and weighting
occur via the same physical mechanisms. The difference
between the two, therefore, exists solely in the software
layer (i.e., how the user interacts with each). An end user
shouldonlyneed tocontrolweighting,andshouldnotneed
to worry about active trimming. In other words, the same
weight command should produce the same results in two
separate chips regardless ofmanufacturing imperfections.
Trimming, therefore, must be completely automatic and
free from user interaction. This separation is absolutely
critical to enable use of photonic computing hardware
by non-experts, and consequently for the proliferation
of the technology. In order to realize this, there should
be two parallel circuits that are independent and are
characterized by independent metrics: trimming, which
makessure thatanychipwith thesamedesignhas thesame
baseline behavior; and weight control, which translates
weight command to effective weight.

4 Control algorithms
One of the biggest advantages of using analog photonic
weights is that high-bandwidth optical signals can be
weighted by an optoelectronic device that consumes
constant power (or static power). It is worth noting,
however, that asbandwidth is increased,more static power
is required at the optical source to compensate for the
added noise captured by the summing photodiodes. In
the mechanisms presented in the previous section, the
analogweight is definedby the electrical voltage or current
applied to the microresonator. The accuracy and precision
of each weight is a function of the completeness of the
model along with the effects of noise and disturbances. In
this section, we outline a simplified weight bank model
and discuss practical examples of noise and disturbances.

4.1 Simplified microresonator weight bank
model

To illustrate the ramifications of control algorithms, we
present a simplified model of a resonator weight bank
(Table 2). Each weight (e.g., a microring resonator) can be
tuned via silicon’s thermo-optic effect by controlling the
local temperature. By sourcing current through a resistor
placed nearby, this temperature can be adjusted directly
and efficiently. This phenomenon is referred to as Joule
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Table 2: Simplified microresonator weight bank model, from
actuation current (step 1) to resulting weight (step 4).

Step Physical mechanism

1 Joule heating:

Ti = T0 +
N∑
j
Ki jR jI2j

T i: local temperature; T0: room temperature; K:
effective thermo-optic coefficient matrix (diagonal
in the absence of thermal crosstalk); Ri: electrical
heater resistance.

2 Thermooptic effect:
𝜆i = 𝜆0,i

(
1+ 𝛽eff,iΔTi

neff (𝜆0,i )

)
𝜆i (𝜆0,i): resonance frequency of filter with applied
heat (at room temperature), respectively; 𝛽eff:
thermo-optic coefficient; neff(𝜆0,i): effective
waveguide index;ΔT : temperature offset.

3 Lorentzian transfer function:
(𝜆;𝜆0,Δ𝜆) = 1−

(
1+ (𝜆− 𝜆0)2∕Δ𝜆2

)−1
Δ𝜆: half-width half-maximum of Lorentzian transfer
function modeling a single resonator weight.

4 Weighted sum:

𝜇 = 1
N

N∑
i
(𝜆l,i;𝜆0,i,Δ𝜆i) ⋅ Pi∕Pmax

𝜇 ∈ [0, 1]: weighted sum (photocurrent normalized
by PD’s responsivity); Pi: optical intensity of input
lightwave at wavelength 𝜆l,i; Pmax: maximum optical
intensity.

Changed to table formatting in response to reviewer 1.

heating. We assume, for simplicity, that the properties of
the resistor do not change with its temperature or with the
circulatingoptical power in the resonator cavity.Due to the
phase-matching condition on resonators, there is a direct
relationship between resonant wavelength and refractive
index, namely 𝜆∕n = constant. In a simple model, the
transmissionof themicroresonator is a function of only the
“detuning,”or thedifferencebetween thefixedwavelength
(𝜆0) and the tunable resonance frequency (𝜆). In high
Q-factor resonators, this function can be approximated
by a Lorentzian line shape. In Table 2, this is denoted by
(𝜆− 𝜆0). The second-order deviations from this model
are: dependence of transmission on optical intensity (at
𝜆0), optical crosstalk from neighboring resonators, and
undesired optical attenuation in the presence of electrical
carriers (most important for doped waveguides).

After weighting, the output of the weight bank is
fed to a photodetector. In our simplified model, this
photodetector is assumed to have a constant responsivity
independentof inputpower.Theelectricalpropertiesof the
photodetector (parasitic capacitance, parasitic resistance,
or frequency response) can be ignored at this point and

instead captured later by the model of the electrical
receiver (inneuromorphicphotonics, thiswouldbe theE/O
conversion of the neuron). In practice, the photodetector’s
responsivity can have a range of values depending on
fabrication variation and operating wavelength, and this
should be captured by the calibration model via a linear
correction. Once the optical power input is too high,
however, the responsivity drops due to space-charge
screening effects [40]. This nonlinear relationship between
photocurrent and optical intensity cannot be calibrated
away, and results in reduced precision.

4.2 Compensating for noise and
disturbances

The simplified model presented in Section 4.1 is effective
at modeling the weighted sum 𝜇 as a function of the
optical intensities at each wavelength Pi. In this scheme,
the signal is modulated onto each carrier wavelength. To
simplify, we assume a perfect modulation scheme where
the instantaneous intensity is described as follows:

Pi(t) = Pi,inputxi(t), (7)

where xi(t) is the same as in Eq. (1) and Pi,input.
In this analog representation, we can identify 𝜇(t)∕P0

as the equivalent of the weighted sum y(t) scalar, and the
weight as:

𝑤i ≡ (𝜆l,i;𝜆0,i,Δ𝜆i) ⋅ Pi,input∕NP0, (8)

where P0 is a normalization constant.
As revealed by Eq. (8), however, noise and temporal

disturbances to the values of Pi,input can negatively affect
the weight’s precision or the resolution of the sum y. These
effects cannot be captured by any calibrationmodel, since
by definition a calibration model must be based on static
parameters. Disturbances must nonetheless be corrected
independently from the transmission control, since the
user will reasonably expect the chip to have a constant
average weight vector.

In practice, there are two relevant sources of distur-
bances to the input intensity. One is ambient temperature,
and the other is polarization drift accumulated in the
input fibers. To show the impact these sources have on
the operation of a weight bank, we have setup a microring
resonator weight bank with four rings, placed on top of a
temperature controlled base (Figure 3). These effects can
be observed, for instance, in the optical spectrum of a
microring resonator weight bank (Figure 4). We observe
that the temperature drift essentially maintains the shape
of the transmission curve for each resonator, as expected
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Figure 3: Experimental setup of an optical transmission spectrum
measurement of a 4-microring resonator weight bank. The PIC sits
atop a thermoelectric module whose heat flow can be electrically
controlled, and acts as a ‘‘thermal bath’’ that stabilizes the PIC
temperature. A tunable laser source (TLS) generates
continuous-wave laser lightwave whose wavelength is quickly
scanned. An optical spectrum analyzer (OSA) synchronized with the
TLS collects snapshots of the transmission spectrum. A polarization
controller (PC) is used to emulate large polarization drifts due to
long-term environmental fluctuations.

for microring resonators. As a result, the microcontroller
can compensate for that by either dissipating extra heat
uniformly across all devices, or by using a thermal bath
that holds the average temperature of the entire chip
constant, such as the thermoelectric module sketched in
Figure 3. This invariance property is unique to microrings
and cannot be generalized to other kinds of resonator
structures. Keeping temperature constant, however, will
stabilize any temperature-dependent device such as res-
onators and optical couplers. A polarization drift in the
fibers outside the chip, however, alters the power spectrum
irregularly, and can only be remedied by recalibrating the
circuit.Wehave found thatusingpolarization-maintaining
fibers and optical adhesives can stabilize the polarization
spectrum indefinitely in laboratory settings. More studies
must be completed in order to evaluate this effect in field
conditions, where significant contributions are expected
from mechanical stress and vibrations.

4.3 Measuring effective weights
The summing element is an integral part of the photonic
circuit, so we typically only have access to output pho-
tocurrent while operating the weight bank. This creates
the challenge of independently verifying that the applied
weight was, in fact, the correct one. Mathematically
speaking, in the linear approximation of the summing
element, for a set of signals xi(t), and a measurement of
y(t), we need to recover the weights 𝑤i in Eq. (1). One
approach could be to ensure that only one channel has

Figure 4: Experimental results of a weight bank’s transmission
profile when subject to a temperature drift (top) or an input
polarization drift (bottom). When the stage was cooled from 24 ◦C to
20 ◦C, the resonance wavelengths of each ring blue-shifted, as
expected from the positive coefficient of the thermo-optic effect in
silicon. The polarization drift was induced by rotating the planar
polarization angle between the laser and the input coupler (cf. 3),
resulting in imperfect coupling to the chip and unpredictable
changes to the transmission spectrum.

a positive value at any given time, for example xi(t) = 1
for time slot t ∈

(
iΔt, (i+ 1)Δt

]
and xi(t) = 0 otherwise.

Then, the measurement of y(t) yields y(iΔt) = 𝑤i. A
better approach, which is more often used, is to use
independent (orthogonal) signals, e.g., xi(t) =

√
2 sin(𝜔it)

whichhave theproperty that∫ xi(t)xj(t)=𝛿ij. Then,asingle
measurement of y(t) can be used to compute all weights
with the following decomposition: 𝑤i = ∫ y(t)xi(t). With
this method, nweights can be continuously monitored for
every integration step.

4.4 Calibration and feedforward control
Regardless of the weighting mechanism, the control strat-
egy of a resonator involves a calibration stage and a control
stage. The calibration is required to adjust the weight
bank model parameters caused by fabrication variation
or uncertain initial conditions. The control stage runs
continuously thereafter.

Calibration and control strategies must take into
consideration an array of resonators in the weight bank,
because coupled resonators suffer from both optical and
thermal/electrical crosstalk. There is no noticeable electri-
cal crosstalk in thisdevice, sinceallheatersare surrounded
by silicon dioxide, a highly insulating material. As shown
in Figure 5, applying Joule heating to the vicinity of
one resonator directly changes its transmission function,
which according to the model introduced in Section 4.1
results in changing the weight for that wavelength. Notice,
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Figure 5: Experimental optical spectral response of a four-ring
weight bank as current flows through the heater situated on top of
the first ring in the bank (cf. 3). To first order, only one resonance
feature is shifted, without affecting others. The inset on the right
corresponds to the unshaded area of the left, and shows the
transmission values for each of the four tuning powers shown in the
legend above. Note that the resonance shift is approximately
proportional to the electrical power dissipated on the heater
element.

however, that the neighboring resonator also undergoes
a small change in its transmission function due to optical
crosstalk. Though barely visible, this second order effect, if
uncompensated, reduces the accuracy of the weight bank.
For a 8-bit accuracy level, the transmission on the other
rings must be kept within 0.4% of their target. In our
model,wecancapture this crosstalk in thematrixK, shown
in Table 2.

Crosstalk can be significantly, but not totally, reduced
by carefully engineering the geometry of each device. To
reduce the thermal crosstalk, MRRs can be spaced further
apart, taking advantage of the low thermal conductivity
of silicon dioxide cladding [29]. Optical crosstalk can be
reduced by increasing the wavelength spacing between
resonators, at the expense of spectral capacity [9].

As the number of weights N in a system increase, so
does the number of independent variables in the model.
Mitigating the thermal and optical crosstalk between
resonators in a weight bank requires measuring crosstalk
terms and fitting a multidimensional model with (N2)
variables. For example, the crosstalk matrix K is of
dimension N × N. Consequently, we must rely on indirect
measurements and physical models to control each res-
onator in the weight bank system.

A series of approaches have been developed to tackle
the weight bank control problem. The earliest method
presented in the literature is called the feedforward
scheme [41], shown in Figure 6. In this scheme, the con-
troller would possess an electricalmodel of the resonators,
including an approximation of the thermal and optical
crosstalk effect. The model maps a vector of electrical
current values to a vector of weight values, and vice
versa. Based on a desired weight, the model converts to

an actuation electrical signal for each resonator. But once
signals are set, there is no way to verify or validate that the
effective weight is correct.

The advantage of this approach is the simplicity of
the control algorithm – it is similar to a lookup table in
electronics. This calibration algorithm scales with (N),
despite the fact that the feedforward model has (N2)
parameters. However, this approach has two main disad-
vantages: thecalibrationstep iscomplexanddoesnotwork
when the outputs of the weight bank are not accessible.
It also fails to correct for environmental variations or
laboratory conditions. As a result, the chip needs to
be recalibrated before each use, making this approach
impractical for large N.

To resolve these fundamental issues with the feedfor-
ward scheme, the microresonator device can be designed
with an embedded sensor, capable of measuring the
appliedweight in real time.Witha sensor locatednear each
resonator in the weight bank, measuring, e.g., the local
temperature, we can directly feed an electric signal back to
thecontroller toadjust formodeldeviations.This is calleda
feedback scheme, and will be revisited in Section 5.3, after
we delve into index modulation, actuation and sensing
physics in photonic waveguides in Section 5.

5 Design for manufacturability
Passive optical devices are sensitive to the effective refrac-
tive index of waveguides, which determines the optical
path length along the path of propagation. In integrated
photonics platforms, the effective refractive index varies
with the height and width of the waveguide [42]. The
widthof integratedwaveguides is lower-boundedbyapho-
tolithography processwith a limited resolution. In the case
of silicon photonic chips, deep ultraviolet photolithogra-
phy is used, with a wavelength of 193 nm, limiting the
minimumlateral feature sizeofdevices to65nm[26].Wider
waveguides are typically used, however, since increasing
width leads to tighter optical mode confinement and lower
losses. This, in turn, is upper-bounded by the width at
which the waveguide supports a second lateral mode at
the wavelength of operation. As a result waveguide width
is usually chosen to be the maximum single-mode width
minus some engineering margin. For similar reasons, the
height of thewaveguide is often chosen tobe themaximum
that only admits a single infinite-slab mode minus some
engineeringmargin. A de facto industry standard height is
220 nm with a standard deviation of 2 nm [42].

The combination of lateral and vertical waveguide
manufacturing imperfections results in fixed, random
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Figure 6: Procedure for feedforward cali-
bration and control. The calibration can
be performed in a single sweep for each
resonator ((N)) with a specially crafted
calibration signal xcal (a). The calibration
must be completed in two steps (b and c).
Each step completes in (N) substeps, if
we count that the w vector is measured in
a single substep (c). Once the calibration
is completed and the crosstalk matrix K is
known, the control step uses the stored
model to calculate the desired electrical
current inputs (d). The overall computational
complexity is (N). This scheme requires
another calibration procedure any time the
chip undergoes any environmental variation
such as a temperature shift.

phase shifts in each waveguide both across the same chip
and between chips. That means that identically-designed
interferometric devices will behave differently once
fabricated. For resonator structures, random phase
offsets above 2𝜋 are sufficient to render any prediction
of a post-fabrication resonance wavelength impossible.
However, within the same chips the phase offsets are
spatially correlated [43], meaning that resonators in close
proximity have resonance offsets similar in sign and
magnitude.

There are several post-fabrication options available
to compensate for undesired random phase shifts. These
techniques are referred to as trimming, where a section of
an optical waveguide material is physically or chemically
altered until the desired phase is achieved. The range of
phase shifts that can be compensated is typically limited,
andasa resultdesign-level compensation isoften required.
Design for manufacturability tackles this challenge by

predicting theamount of compensation requiredviaMonte
Carlo simulations of fabrication variability [44]. A success-
ful design formanufacturability is able to reduce the range
of fabrication variation that will need to be compensated
by trimming, and can result in considerable cost saving
overall.

5.1 Index tuning mechanisms
Many refractive index tuning mechanisms have been
developed for silicon photonics, and Table 3 displays some
state-of-the-art devices from the literature. In silicon, the
strongest effects are the thermo-optic effect, free-carrier
absorption and free-carrier dispersion (also known as
plasma dispersion). Exploiting the thermo-optic effect for
tuning with metal filament microheaters is the easiest
and most popular way to effect large index changes,
but it is slow and power inefficient [45]. Thermal tuning



3816 | T. Ferreira de Lima et al.: Photonic resonator weights

Table 3: Efficiency and speed of various index modulation
techniques on silicon photonics.

Modulation effect Speed Efficiency Ref.

Volatile mechanisms

Thermo-optic TiN (a) ∼5.6 μs P𝜋L= 6.8 mWmm [45]
Thermo-optic N+/N/N+ Si (b) ∼μs P𝜋L= 0.8 mWmm [46]
Reverse-biased PN (c) 41 GHz V𝜋L= 46 V mm [48]
Graphene SLG (g) 30 GHz1 V𝜋L= 28 V mm [49]
LiNbO3/Si hybrid (f) 70 GHz V𝜋L= 22 V mm [50]
III–V MQW/Si hybrid (d) 27 GHz V𝜋L= 2.4 V mm [51]
III–V/Si MOS (e) 2.2 GHz V𝜋L= 0.9 V mm [52]
ITO MOS (e) ∼GHz2 V𝜋L= 0.52 V mm [53]
Forward-biased PIN (c) 0.5 GHz V𝜋L= 0.36 V mm [54]

Non-volatile mechanisms

PCM Ge2Sb2Te5 (h) 0.8 GHz3 E𝜋 = 400 pJ [10]
PCM Sb2Se3 (h) 1.25 MHz E𝜋 = 176 nJ [55]
Ion implantation 0 0 [56]

Options for phase modulation of silicon waveguides. (a) Thermal
tuning with TiN filament; (b) thermal tuning with embedded
photoconductive heater; (c) PN/PIN junction across the waveguide
for injection and/or depletion modulation; (d) III–V/Si hybrid
waveguide; (e) metal-oxide-semiconductor (MOS), where the ‘metal’
is actually an active semiconductor; (f) lithium niobate cladding
adds a strong electrooptic effect; (g) 2 single-layer-graphene (SLG)
‘capacitor’; (h) non-volatile phase change material. 1This
bandwidth was not yet shown experimentally. A big challenge is to
reduce the contact resistance with Graphene, reducing RC-loading
effect. 2Not experimentally shown at high-speed. 3Demonstrated
up to 20 MHz. We broke down the mechanisms into volatile and
non-volatile based on the reviewer recommendations.

with waveguide-embedded heaters is similar in efficiency
[46], but provides a potential feedback signal for weight
control [47]. To exploit free-carrier effects, we can directly
manipulate carrier concentrations by selectively p- and
n-doping the waveguide in a lateral junction [48]. Free-
carrier absorption dominates if the junction is forward
biased, while free-carrier dispersion dominates if the
junction is reverse biased.

Moving beyond pure silicon approaches, one can
make hybrid waveguides consisting of a silicon core and
additional materials with favorable index modulation

properties that are placed close enough to the core
that interact with the evanescent field. Some examples
include III–V semiconductors [51], lithium niobate [50],
and graphene [49]. These mechanisms are faster and
requiremuch lesspower compared toheaters, but typically
provide smaller tuning range before the onset of electrical
damage.

Non-volatile mechanisms: Tuning methods based on
phase change materials (PCMs) allow weights to retain
their values without active power consumption after
being set. This is called non-volatile weight (or memory)
and provides the most energy efficient weight setting
method: note that in Table 3 the efficiency is mea-
sured in Joules rather than Watts. This method involves
depositing chalcogenide films atop silicon waveguides,
e.g., Ge2Sb2Te5 (GST) [10, 57], Ge2Sb2Se4Te1 (GSST) [58],
Sb2Se3 [55, 59]. Microring resonator non-volatile weights
with low losshave recently beendemonstratedwithSb2Se3
PCMs [55].

Combining volatile and non-volatile methods:
Another important variation source is ambient temper-
ature. Automotive-class devices must have an operating
temperature rangeof−40 ◦C to 125 ◦C.Due to silicon’s large
thermo-optic coefficient, this temperature range results in
a large resonance drift, albeit no worse than the original
fabrication variation (Figure 7). Depending on the final
application of the circuit, these two sources of variation
can be addressed with different index modulation options
from Table 3.

We propose two practical options for addressing
variations, including the ones present in automotive
temperature ranges. The first is to use post-fabrication
trimming to lock resonators to their desired resonance
wavelengths at a set operating temperature, which can
be chosen, for example, to be above room temperature
to avoid condensation. A thermoelectric controller can
then be used to stabilize the chip’s resting temperature
and fine-tuning can be performed via either microheaters
or PN junctions, depending on the required operation
speed and actuation range. This greatly simplifies the
photonic integrated circuit design, but the use of temper-
ature control adds thermal engineering complexity to the
packaging. Another option is to rely on active trimming,
in which on-chip microheaters are used to compensate
for wide operating temperature ranges. Accompanying
this, fine-tuning can be performed via microheaters or PN
junctions. This approach requires more control circuitry,
but eases the overall burden on packaging [30, 31]. Both
approaches can be visualized in Figure 7.
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Figure 7: Active trimming and phase modulation strategy. In this example strategy, Ge ion implantation is used as a post-fabrication
trimming technique, a PCM is used as a field-programmable non-volatile memory, an N-doped heater is used for weight tuning and
configuration, and a standard PN junction is used for fast modulation. The graph on the right shows the relative phase variability from the
environment compared to the necessary variation required for modulation and weight configuration. These values were experimentally
computed from test structures fabricated through a standard silicon photonics foundry [60].

5.2 Electrical actuation and sensing
As reviewedabove, there aremultiplephysical phenomena
that are available for electrically adjusting the refractive
index of a waveguide, and consequently the resonance
wavelength of an integrated resonator. Since the weight is
determined by the distance between a lightwave’s wave-
length and a resonator’s resonance wavelength (Table 2),
wewould ideally have a sensor that can directly determine
resonance wavelength (𝜆0). With such a sensor coupled
with resonanceactuation,wewouldonlyneed tomodel the
mapping between resonance wavelength and weight (i.e.,
a Lorentzian function for microring resonators) in order to
precisely perform weighting. In reality, it is impractical to
measure 𝜆0 directly because it would require a precision
spectrometer.

One practical alternative is to use a temperature
sensor [61] surrounding the resonator. This allows abso-
lute temperature stabilization independent from the
environment’s temperature. Although this provides an
efficientmechanismfor ‘fixing’ aweight, it usually requires
sourcing very precise currents and reading tiny voltage
signals with high dynamic range. So far, it has only been
successfully employed to stabilize microring resonators
aroundmaximum transmission,which is useful for optical
switching but not smoothly-variable weighting.

Another practical alternative is to measure the optical
power circulating within a resonator with a photosensitive
element, shown in Figure 8. This method only works if
the weight value is proportional to the circulating power
relative to input power, and if input power is otherwise
known. A simple method for measuring circulating power
is by lightly doping the resonator’s waveguide, which
results in a photoconductive resistor. This resistor can be
used for both heating and sensing the circulating power,

Figure 8: Schematic of a resonator trimming circuit. Effective
trimming requires an actuation stage and a sensing stage. Dropped
power reaches a maximum when the actuation signal brings the
resonator’s resonant wavelength to exactly the signal’s wavelength.

and was successfully employed in both resonance-locking
circuits [46] and weight control [47].

This sensing modality will suffer if the nonheater par-
asitic resistances1 are too large (e.g., more than 10 kOhm).
Fortunately,whenchips arepackagedwith low-impedance
wirebonds and properly designed printed circuit boards
(PCBs) all such parasitic resistances become insignificant
compared to the heater resistance [62]. We have found that
a heater resistance range of 1.5–2.5 kOhmworks well. This
is because in a typical siliconwaveguide, a 𝜋 phase shift is
achievedwith the application of∼20mWofheating via the
thermooptic effect. Such resistance therefore helps limit
the required voltage to under 10 V and current to under
4 mA, within the ranges of widely available DAC and ADC
circuits. Finally, we found that adding noise filtering at the
PCB level and shielding cables are key to combat power
supply ripple and electromagnetic interference.

1 These include, e.g.,wiring, trace, and electrode contact resistances.
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5.3 Feedback control
Equipped with an appropriate sensing element, it is then
possible to build a closed-loop control circuit that dynam-
ically responds to external disturbances to a resonator.
Similarly, with a sensor for each resonator in a weight
bank itbecomespossible tocorrect fordisturbances toeach
resonator individually. This modality of control based on
sensed signals is called a feedback (or closed-loop) control
scheme. Compared to the feedforward scheme introduced
in Section 4, the feedback scheme offers superior accuracy
and precision as well as reduced control complexity.

A typical control circuit involves a current-based
actuator, voltage-basedsensors, andamodel thatmaps the
sensing signal to the desired control quantity (Figure 9).
Having a sensor for every weight element simplifies the
feedback control law from one large model for the weight
bank to a collection of independent models for each

resonator. Unlike feedforward control, it is no longer nec-
essary to take into account the thermal crosstalk between
resonators or the ambient temperature because the closed-
loop circuit corrects for any deviation from the target.

Aphotoconductive sensor (PCS)providesavoltage sig-
nal that is linearly dependent to the transmission function.
The transmission function canbe translated inwavelength
space with an actuator, leading to smoothly-controllable
weight values. Rather than modeling how transmission is
affected by actuation and other environmental variables,
the controller can sense the voltage directly and simply
adjust the actuation accordingly.

Despite using a closed-loop/feedback control circuit,
each resonator may vary slightly due to fabrication imper-
fections. In order to compensate for this, all imperfections
must be parameterized and calibrated out on a chip-by-
chipbasis. Fortunately, thismodel onlyhas tobebuilt once
per device. Therefore, it can be done at the manufacturing

(a)

(b) (c)

(d)

Figure 9: Procedure for feedback calibration
andcontrol. Thecalibrationcanbeperformed
in a single sweep for each resonator ((N))
with a specially crafted calibration signal
xcal (a). The goal is to fit the relationship
between effective weight and the sensor
voltage signal (b), which is ideally a linear
relationship (c). Once that is established, the
control procedure (d) takes a commanded
weight, computes the target sensor voltage,
and uses a feedback loop to update the
actuation electrical current until that voltage
is reached. This feedback loop should be
resistant to environmental variations so long
as the feedback loop can operate at a higher
speed than the variations.
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facilityandstored ina read-onlymemoryco-packagedwith
the chip.

6 Conclusions
Practical neuromorphic photonic processors employing
resonator-based weight banks must be able to achieve
high precision and accuracy while being readily manu-
facturable and deployable in variable/dynamic environ-
ments. This is made particularly challenging by the fact
that resonators are highly sensitive to both manufacturing
variations and environmental disturbances. In order to
compensate for this, individual resonator weights must be
specifically designedwith calibration and control inmind.

In this paper, we have outlined index tuning and
sensing mechanisms that can be used for actuation and
sensing of weights, as well as feedforward and feedback
calibration/control methodologies for use with weight
banks. With multiple index tuning mechanisms with vary-
ing speed, efficiency, and dynamic range available, system
designers can choosewhichmechanism or combination of
mechanisms are suitable based on application needs.

As an example, we outline a fabrication design
strategy that can compensate for worst-case fabrication
variation (Δ𝜙 = ±2𝜋) and employment in automotive-
class operating temperature ranges (−40 ◦C–125 ◦C).
Germanium ion implantation is used for post-fabrication
trimming, a phase-change material (PCM) is used to
compensate for large temperature variations, an N-doped
heater is used for lower-bandwidth weight tuning, and a
PN junction is used for fast modulation. Complementing
this, photoconductive sensors are used on each resonator
inorder toenable feedbackcalibration/controlprocedures.
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Appendix: Microring resonator
weight design methodology
In this section, we outline our design methodology for
symmetric add–drop microring resonators. We follow the

nomenclature from Ref. [32]. The ring’s add and drop
transmission coefficients can be computed analytically
using transfer matrices with only four parameters: self-
couplingcoefficient r (thruport amplitude), round-trip loss
coefficienta→ ra (accounting for thesecondcoupler’s cou-
pling loss), cavity lengthL, andeffective indexof refraction
neff as a function of wavelength. Each parameter depends
on the geometry of the resonator such aswaveguidewidth,
the gap between the bus waveguide and the ring, the
ring’s radius R, and the doping level of the waveguide.
r can be computed through finite-difference time domain
(FDTD) calculations of the coupler section. a is related
to power attenuation coefficient 𝛼 via a2 = exp (−𝛼L),
and 𝛼 is determined by the combination of the loss
mechanisms in the ring. This includes the propagation loss
from absorption and waveguide imperfections (process-
dependent) and bending loss. L= 2𝜋R for ring resonators,
and the waveguide effective index depends on waveguide
material and geometry and is calculated from eigenmode
simulations. From the resulting transmission coefficients,
the extinction ratios – corresponding to the ratio between
maximum and minimum weights – can be computed by
evaluating the ratio between the maximum and minimum
transmission values on either the thru and drop ports.

The quantities of interest for weighting can be
extracted from the parameters above. The free spectral
range is calculated as

FSR (𝜆) = 𝜆2

2𝜋R

(
neff(𝜆)− 𝜆

𝜕neff
𝜕𝜆

)−1
.

The finesse determines roughly how many WDM
channels (or resonators) canshare thesamebuswaveguide

 = 𝜋 arccos
(

2ar2
1+ a2r4

)
.

The Q-factor approximates the optical rise and fall
times of the resonator:

Q = 𝜆

FSR .

Finally, the thru and drop extinction ratios allow
calculation of the weighting dynamic range (assuming the
index tuningmechanism can be used to tune the resonator
on and off-resonance):

ERthru =
(a+ 1)2
(a− 1)2

(1− r2a)2
(1+ r2a)2 , ERdrop =

(1+ r2a)2
(1− r2a)2 .

We used Lumerical FDTD to perform the finite-
difference time domain coupler simulations to extract
r(𝜆) as a function of geometry, and Lumerical MODE for
the curved waveguide eigensolver simulations to obtain
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neff(𝜆). A Python script implements the above analysis
pipeline, and the results can be visualized in a Jupyter
Notebook. The Python script and the results of the Lumer-
ical simulations are made accessible online [35].
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