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Abstract—Spiking neural networks are known to be superior
over artificial neural networks for their computational power
efficiency and noise robustness. The benefits of spiking coupled
with the high-bandwidth and low-latency of photonics can enable
highly-efficient, noise-robust, high-speed neural processors. The
landscape of photonic spiking neurons consists of an overwhelming
mayjority of excitable lasers and a few demonstrations on nonlinear
optical cavities. The silicon platform is best poised to host a scalable
photonic technology given its CMOS-compatibility and low optical
loss. Here, we present a survey of existing photonic spiking neurons,
and propose a novel spiking neuron based on a hybrid graphene-
on-silicon microring cavity. A comparison among a representative
sample of photonic spiking devices is also presented. Finally, we
discuss methods employed in training spiking neural networks,
their challenges as well as the application domain that can be
enabled by photonic spiking neural hardware.

Index Terms—Neural networks, nonlinear photonics, photonic
integrated circuits.

1. INTRODUCTION

RTIFICIAL intelligence relies on neural networks, which
A are getting increasingly computationally intensive and
power hungry: the computational power required by neural
network models has doubled every 3.4 months in the last decade
while the electronic hardware density has doubled every 2 years
as per the Moore’s law [1]. The need for energy-efficient neural
processing has inspired neural hardware engineering, as conven-
tional computers are intrinsically inefficient for distributed pro-
cessing algorithms [2]. Building a neural hardware in electronics
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TABLE I
QUALITATIVE COMPARISON BETWEEN SPIKING NEURAL NETWORKS (SNNS)
AND ARTIFICIAL NEURAL NETWORKS (ANNS)

ANNs SNNs
Energy consumption Continuous At firing events
Noise robustness Low High
Datasets Static Dynamic
Application domain Non event-based eg  Event-based (tempo-
image classification ral) eg. time-series
prediction
Training Relatively easy Hard

is bottlenecked by the deceleration of the Moore’s law, as well as
the fundamental tradeoff between bandwidth and interconnec-
tivity [2], [3]. This deficiency of electronic hardware has spurred
extensive research interest and engendered the nascent field of
neuromorphic photonics that aims at leveraging the advantages
of optics and neuromorphic architecture to enable a computing
platform with high efficiency, interconnectivity and extremely
high bandwidth [2], [4].

The vast landscape of neural network models can be broadly
divided into artificial neural networks (ANNs), comprised of
continuous-valued nonlinear activation functions operating on
analog, static inputs, and spiking neural networks (SNNs) which
operate on discrete spatiotemporal spikes. A summary of qual-
itative relative comparison of ANNs and SNNss is presented in
Table I. Since spiking neurons are only active under a spike event,
unlike ANNS that continuously process redundant information,
the power consumption of SNNs can be significantly lower
relative to ANNs [5]-[7]. The spiking nature of SNNs also
results in superior robustness to input noise. Additionally, the
temporal dimension gives SNNs a higher representational capac-
ity making them computationally more powerful than their ANN
counterparts [8], [9]. These features make SNNs perfect for
event-based applications where temporally varying information
is to be processed, e.g. time-series prediction and classification
tasks. Of course, a practical realization entails a spiking neural
hardware that can enable the theoretical power-efficiency and
computational superiority of SNNs. Major implementations of
spiking hardware in electronics include Loihi from Intel [10],
Neurogrid from Stanford [11], TrueNorth from IBM [12], etc.
Photonics i.e. optical physics offers a viable route to further push
the energy efficiency and processing speed of SNNs.

Existing photonic spiking hardware are overwhelmingly
based on excitable semiconductor lasers on III-V platforms
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[13]-[17], which undergo high optical loss due to weak confine-
ment of light and high material absorption, and can be prohibitive
to scaling. Such scalability issues can be resolved by a silicon
photonic platform, which is CMOS-compatible and benefits
from existing fabrication technology, and have very low loss
at telecom wavelengths. There has been some recent work in
realizing spiking neuron functionality on silicon; most notably
Refs. [18], [19] use phase-change materials embedded on silicon
and silicon nitride platforms to engineer spiking-like functional-
ity through nonlinear pulse transformation. However, the spik-
ing behavior in their approaches is reliant on a synchronized
operation between the output spike pulses and the input data.
Their approaches face two fundamental limitations: the lack of
temporal encoding feature, which is a key characteristic of spik-
ing, and the lack of asynchronicity prohibits arbitrary network
configurations. In this paper, we propose a CMOS-compatible
spiking neuron based on a graphene-on-silicon nonlinear micror-
ing resonator where the nonlinear effects in silicon and graphene
generates a spiking dynamical system. Graphene enhances the
efficiency of the nonlinear photonic processes [20]-[22] that
enables spiking at a much faster timescale (~picoseconds)
previously impossible with silicon-only nonlinear devices [23],
[24]. Additionally, spiking on a standard CMOS-compatible
commercially-available silicon photonics (SiPh) platform offers
the advantages of large-scale manufacturing and easy interface
with standard silicon photonic components. While graphene-
based integrated photonic technology has not matured quite as
much as SiPh yet, the incredible performance merits of various
graphene-based photonic devices should inevitably push for
standardization of graphene integration on Si photonics [25]. It
is thus timely to innovate in novel graphene-on-silicon devices.

Another crucial component of realizing an efficient neural net-
work besides hardware is algorithms. ANNs have gathered mass
acceptance due to their simplicity in training and availability
of large labelled datasets. ANNs can learn on gradient-descent
based algorithms like backpropagation [26], whereas SNNs
require specialized algorithms due to the non-differentiable
nature of spiking [27], [28]. The constraints become further
stringent when it comes to a photonic hardware, which is highly
susceptible to process variations and noise, and necessitates
algorithm-hardware co-design. While training algorithms for
spiking can be adapted from neuroscience and electronics, it will
be key to be mindful of the requirements of photonic hardware
and the application when selecting an algorithm.

Once there is a framework for spiking neural hardware and
algorithms in place, it is also advantageous to evaluate the
spike-based processing on event-based applications that nat-
urally fall within the realms of spike-based processing. This
goes against the approach that has been taken so far of chasing
ANNSs over classification accuracy. Event-based applications
like brain-machine interfaces, autonomous driving etc, that also
demand ultra-fast and low-power computation and are beyond
the grasp of ANNs and spiking electronics are where we should
deploy photonic spiking hardware. Availability of large dynamic
datasets of such applications will be useful for efficient training
before deployment.

In this paper, we provide a survey of existing demonstrations
of photonic spiking neurons, propose a novel CMOS-compatible
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spiking neuron design based on a graphene-on-silicon micror-
ing resonator and compare a representative sample of neu-
rons against various performance metrics. We then summarize
various training methods available to spiking neurons, show
a simulated benchmark classification on our proposed neuron
using one such class of algorithm and argue the case for local
learning algorithms for photonic hardware. We finally discuss
the application domain of spiking neural hardware that can best
showcase their computational strength.

II. OVERVIEW OF PHOTONIC SPIKING NEURONS

Existing demonstrations of photonic spiking neurons mirror
biological neurons the closest in behavior rather than emulating
them. Research in neuroscience has led to various models of
biological neurons, encompassing a wide range of complexity
from the earliest ones like the Hodgkin-Huxley model, which
was computationally complex, to progressively simplified ones
like the Izhikevich neuron model and then the leaky integrate-
and-fire model. Developing a neural hardware entails replicating
a given model’s behavior. Laser cavities have long been studied
for excitable and spiking properties [29]-[34]. However, the
work of Nahmias er al. [14] drawing parallel between semi-
conductor lasers and the leaky integrate-and-fire neuron model
rekindled interest in photonic spiking hardware. Consequently,
an overwhelming majority of photonic spiking neurons are based
on semiconductor lasers, while the remainder are variants of
nonlinear optical cavities. One way to systematically categorize
them can be to distinguish depending on whether the operation
mechanism is opto-electronic or all-optical. Fig. 1 illustrates the
categories, including a cartoon illustration of a representative
system in each sub-category.

A. Opto-Electronic Systems

This class of spiking systems includes semiconductor lasers
where optical feedback within the laser cavities leads to nonlin-
earities that endow excitability. Refs. [3], [35] offer an exhaus-
tive overview of the spiking neurons that fall under this class.
The lasing mechanism is based on electrical pumping while
the injection can be either electrical or optical. The electrically
pumped devices are often studied with the Yamada model,
which was first used to demonstrate excitability in lasers with
saturable absorbers [31]. Notable examples within this include:
graphene excitable laser [36], VCSELs [14], semiconductor
optical amplifiers [37] and distributed feedback laser [35]. An
illustrative operating principle of a distributed feedack laser is
shown in Fig. 1 where the weighted optical signal is summed
by a photodetector which drives the excitable laser resulting in
output spikes.

The second class of spiking neurons based on optoelectronic
lasers includes lasers that are optically injected i.e. the optical
signal directly drives the excitable laser resulting in a spike
response, as shown in Fig. 1. Early demonstration of excitability
in lasers subject to optical injection was shown in [33], [38]. This
was followed by excitable devices involving quantum dots [39],
microring lasers [40], [41], microdisk lasers [42] and quantum
wells [43].
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Fig. 1. Implementations of photonic spiking neurons, categorized into (top)
optoelectronic devices including semiconductor lasers, and (bottom) all-optical
devices, including lasers, phase-change material-based devices and nonlinear
cavities. Additionally, the operational principles of each class of devices is also
illustrated, showing incoming and output spikes, where colors represents optical
wavelengths.

B. All-Optical Systems

All-optical excitable devices have relatively more diversity
in their operational principles, ranging from lasers to passive
optical cavities to exotic material-enhanced cavities, as shown
in Fig. 1. Lasers within this category include those that are
optically pumped and become excitable in response to optical
perturbations. Early works of this kind were done in Q-switched
lasers [44] and lasers with saturable absorber [45], [46]. This was
followed by several implementations of vertical cavity surface
emitting lasers (VCSELs) [16], [17]. There was a parallel effort
in studying all-optical excitability in optical cavities such as
microring resonators [23] and photonic crystal cavities [24]. Re-
cently there have also been substantial efforts towards realizing
engineered excitability using phase change materials [18], [19].

Laser-based systems face the issue of scalability as their
epitaxial and structural characteristics require non-standard spe-
cialized fabrication methods. On the other hand, integrated
devices that can be fabricated at scale in a commercial foundry
process has significantly higher odds of becoming a viable tech-
nology. Additionally, photonic fabrication technology is highly
susceptible to process variation, and almost always requires
electronics-assisted post fabrication compensation e.g. tuning
resonator resonance wavelengths. This need for co-existing pho-
tonics and electronics requires photonics to remain compatible
to CMOS electronics. These reasons together advocate for spik-
ing neurons on CMOS compatible platforms like silicon. Prior
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demonstrations of a CMOS-compatible spiking neuron either
suffer from speed bottlenecks, or lack the asynchronicity funda-
mental to spiking neurons. In the following section, we propose
an alternative approach of engineering a CMOS-compatible
spiking neuron.

III. A CMOS-COMPATIBLE SPIKING NEURON

In this section, we first present our nonlinear coupled-mode
theory based model incorporating the nonlinear effects in silicon
and graphene, and the basis of excitability in the microring.
All-optical devices based on microrings have been previously
used for optical memory [47], [47], switching [48], threshold-
ing [49], pulse carving [50], etc. Using this model, we then
show the simulation results showing key characteristics of a
spiking neuron in a graphene embedded silicon microring cavity.
These include: asynchronous spike generation in response to
input perturbation, threshold operation, temporal integration,
and cascadability.

Excitability, and consequently spiking, in our device arises
from silicon’s nonlinear optical effects [S1]. Similar approaches
have been undertaken before: Ref. [23] demonstrated excitabil-
ity through competing thermal and free-carrier dynamics, but
the processing speed was capped to the MHz range due to the
slower timescale of thermal effects. For excitability at higher
speeds, faster mechanisms such as free-carrier and instantaneous
Kerr effects can be used. However, such a fast excitable system
has not yet been experimentally demonstrated due to the high
optical power threshold to enter such a nonlinear regime [52].
We address this issue by incorporating graphene in the nonlinear
dynamical system. Our proposed spiking neuron is based on a
hybrid graphene-embedded silicon microring resonator (MRR).
Graphene has previously been utilized for enhancing efficiency
in several nonlinear silicon devices [20]-[22]. In [21], the au-
thors even show a power threshold reduction of 50 times in a
graphene-si cavity over just monolithic silicon. The combination
of the MRR cavity-induced coherent power buildup and the
enhancement of silicon nonlinearities by graphene improves the
overall power efficiency of the fast excitability as compared to
just silicon.

A. Coupled Mode Theory Model for the Hybrid Microring

A variety of photonic nonlinear effects are at play in a hy-
brid silicon-graphene microring cavity which together form the
basis of the spiking dynamical system. A good introduction
to silicon photonic nonlinearities can be found in [51], and
the major effects in integrated silicon waveguides are shown
in Fig. 1 of Ref. [53]. Due to the centrosymmetry in silicon
crystalline structure, the nonlinear effects of interest are the
first- and the third- order effects. The third-order nonlinear
effects are instantaneous parametric processes and manifest as
intensity-dependent dispersion, known as the Kerr effect, and
absorption called two-photon absorption (TPA). TPA generates
free-carriers that trigger first-order nonlinear effects namely, free
carrier absorption (FCA) and dispersion (FCD). The free-carrier
effects tend to be much stronger than the third-order effects in
integrated SOI [51]. All the absorption mechanisms contribute
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Fig. 2. (a) Perspective view of the hybrid graphene-on-silicon microring
(MRR) coupled with a silicon bus waveguide. (b) YZ cross-section of the
microring waveguide showing graphene overlaid on silicon. (¢) Normalized
electric field intensity, | Fo|? profile of the resonant TE mode (A = 1.555um) at
a midsection of the waveguide, as calculated by 3D FDTD solver on Lumerical.
The simulation design parameters are: MRR radius = 5 pm, waveguide height
= 220 nm, width = 500 nm.

to thermal nonlinearity, which is a slow (us) dispersive effect and
can be assumed to be constant for fast (GHz) signals. Kerr and
thermal effects cause a red-shift in the cavity resonance while
FCD causes a blue-shift. This is why FCD and Kerr effects
are generally considered to be competing effects in nonlinear
signal processing. Graphene also exhibits the third-order Kerr
and TPA effects, and a strong first-order absorptive effect, known
as saturable absorption. There are two main reasons as to why
graphene can enhance efficiency of nonlinear silicon photonic
effects. First, the Kerr effect in graphene is much higher than the
silicon Kerr effect, and it acts in the same direction as the silicon
FCD effect [54]. Thus the Kerr effect in graphene amplifies
the FCD effect in silicon. Second, the saturable absorption in
graphene induces a nonlinear dependence of the cavity qual-
ity factor on intensity, which facilitates nonlinear effects and
reduces the power threshold for bistability [54].

To trigger the aforementioned nonlinearities, a microring
resonator (MRR) is used to allow for coherent optical intensity
buildup. A perspective view of the graphene-on-silicon MRR
studied in this work can be found in Fig. 2(a) and a cross-
section of the MRR waveguide is shown in Fig. 2(b). The
dimensions of the microring are given in Table II. The high
refractive index of silicon allows for strong light confinement to
facilitate light-matter interaction in both silicon and graphene.
Using a 3D finite-difference time domain (FDTD) simulation on
Lumerical, the electric field distribution of the resonant TE mode
of the microring coupled to a bus waveguide was calculated.
Electric field intensity at the waveguide mid-section is shown
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TABLE II
SIMULATION PARAMETERS USED IN THIS WORK

Parameter Value Parameter Value
N2 si 4.5 x 10~ Wm—2 [62] R 5e-6
na2,G —1x 10713 Wwm—2 [63] Wi 500 nm
Ba,si 9 x 108 [62] Hgi 220 nm
TSA 20 ps Tear 20 ps

orCA 1.45 x 10—23 [58] Qo 60e3
Isat 1010 [64] Qe 1063
o1 8.8e-28 m? [65] ns; 3.478
o2 1.35e-22 m? [65] nsion 1.44

in Fig. 2(c). We model light propagation in the microring using
a nonlinear coupled-mode theory approach based on [55], with
the inclusion of graphene contributions, i.e. its Kerr effect and
saturable absorption in our updated model. The coupled ordinary
differential equations for the temporal evolution of normalized
cavity light amplitude a and free-carrier density n are given in
(1) and (2):

6a/6t = VP +i(0a — nier|al?a) + i(n + opcon®®)a

a (1)

1
— (14 yrcan)a — atpalal’a — T
1+ gk
Wiat

Sn/dt = — g +al? )

The time variable ¢ is normalized with respect to F—lo where
'y = wo/2Q 1, where wy is the microring resonance frequency,
and @, is the loaded quality factor, which includes contributions
from microring radiation loss, coupling loss and saturable ab-
sorption loss in the low-intensity limit in graphene. The cavity
energy variable is normalized as |a|? = |u|?>\/o 3, where u is

the unnormalized cavity mode energy and ¢ = 0,1 njl‘io and

_ c?Basi . . .
8= TohwonZVimVin where 3 s; is the TPA coefficient of sil-

icon. All the cavity nonlinear parameters calculated in (3)—(8)
were obtained from the cavity field profile, Ey(r), shown in
Fig. 2(c). Vrpa is the nonlinear TPA volume parameter defined
as per Ref. [56]; it quantifies the overlap of light and the nonlinear
silicon material, and was calculated using (3):

(J n(r)?|Eo(r)|?d°r)? B2
[ B(r)n(r)?|Eo(r)[*d*r

Here 3(r), n(r) and Ey(r) are spatially dependent variables.
Ey(r) and n(r) were obtained from the FDTD simulation for the
resonant fundamental TE mode where the integration volume
is defined over a 3 d grid overlaying the microring. We set
B(r) = Basi for when n = 3.48, i.e. within the silicon wave-
guide. A two-dimensional crosssection of the resonant mode
profile is shown in Fig. 2(c). Similarly, V., is the nonlinear
carrier volume, which was calculated as V,,, = 2n RLp, where
R is the microring radius and L p is the carrier diffusion length
which is approximate as the waveguide width, similarly as
Ref. [56].

In the first equation, P corresponds to the input light power,
and is normalized as P = 0?5“ P, where P, is the input light
power and I, is the coupling coefficient between the bus wave-
guide and the microring. The imaginary terms on the right hand

3)

VTPA =
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side relate to the linear and nonlinear dispersive effects such
as the Kerr and FCD effects. § is the normalized frequency
detuning between microring resonance frequency and the input
light wavelength. ny., contains the Kerr contributions of both
silicon and graphene, and is defined in (4):

1

Nkerr = m (Vliirr + Vlgarr) “)
where the 73! S parameters are defined as per (5), (6):
wocngmg‘
Si 1
Vkerr = o)
o VI(err
G 03“‘1’31
= 6
,Ykerr ‘/i( G ( )

ny's; is the Kerr coefficient of silicon and o3y, is the third-

order nonlinear conductivity of graphene which quantify the
strength of the Kerr nonlinearity in each material. o3'f, is calcu-
lated using n5'G for a graphene layer thickness of 0.33 nm [57],
[58]. S, and V3i are nonlinear Kerr volumes which measure
the overlap between light and silicon and graphene respectively.
They are defined as per the definition in Ref. [56], given in (7),

(8) below:
(J n(r)?|Bo(r)|?d°r)*n

e = O B ?
vo _ UneREPe

J o3m(r)| Eq, (r)[*d3r

V3 = Vipa as the nonlinear volumes primarily rely on the
confinement of light in the nonlinear material rather than the
magnitude of the nonlinear parameter itself.

The second term in the RHS of (1) corresponds to the
free-carrier dispersion, where the opcp term is defined as per
Ref. [55], i.e. orcp = n“f‘;‘;ﬁg. The real parts of the RHS of
(1) encompass the loss mechanisms: linear loss, free-carrier
dependent loss (rca) and two-photon absorption arrpa, which

are defined as (9), (10):

o = P2 ©
TPA = 2TL2P0VTPA\/ Uﬂ
OFCAC
= — 1
YFCA NToo (10)

The last term in (1) accounts for the intensity-dependent
saturable absorption in the graphene layer, which is derived from
the saturable absorption lifetime model given in Ref. [54]. Wy
is the total stored energy in the cavity at the onset of saturable
absorption, and is calculated as Wy = (Fgy/ EH)2 where E|
is the normalized electric field component tangential to the
graphene layer and Eg, = /21915, Where I, is the saturation
intensity.

In (2) models the temporal evolution of normalized carrier
density in the microring. 7 = 7¢, g is the normalized free-
carrier lifetime in the cavity. Its dependence on |a|* alludes
to the TPA-mediated generation of free-carriers. Therefore our
model in (1) and (2) encompasses all the nonlinear effects that
occur in the hybrid graphene on silicon microring cavity. The
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parameter values used in our simulation are tabulated in Table II.
Parameters were either taken from the reference cited in the
table, or specific to the simulated design.

B. Analogy of the CMT Model to the Spiking Neuron Model

The simplest spiking neuron model that emulates the bi-
ological neuron behavior is the integrate-and-fire model. Its
computational efficiency has made it the most popular model
studied in computational neuroscience. (11) represents a sim-
plified version of this model, where for the ith neuron of the
network, y; is the neuron state variable, a,; corresponds to the
resting state, b; is the internal neuron parameter, § corresponds
to the spikes from connecting neurons with s;; representing the
synaptic connections.

Ui = ai +biyi + Y si;0(t —t5) (11)

j=1

An analogue to the integrate-and-fire model is the resonate-
and-fire model proposed in Ref. [63]. Eq 12 describes this neuron
model, which closely resembles (11). Here, z; is the neuron
state variable, J corresponds to the spikes from connecting
neurons with ¢;; representing the synaptic connections akin
to the y;, 0 and s;; terms in the integrate-and-fire model. The
only difference is in the internal neuron parameter, (iw; + b;),
which has an imaginary component. This imaginary parameter
introduces oscillatory dynamics in the neuron that is absent in
integrate-and-fire neurons.

j=1
Now we draw the analogy between our coupled-mode theory
model of the microring and the resonate-and-fire model de-
scribed in (12). To this end, we simplify (1) which describes the
evolution of the neuron state variable, a i.e. the light amplitude
in the microring. Eq 13 is a simplified version of (1).

d; = (i9; + B;)a; + I; (13)

The parameters introduced above are defined as follows:

I, = \/}3, corresponds to the input, B; = 1+ ypcan —
arpalal? — ﬁ, represents the amplitude decay mechanisms

Wat

and ©; = & — nyerr|al? + n + orep N® represents the disper-
sive contributions. Comparing (12) and (13) clarifies the analogy
between the two models. I; is equivalent to the cumulative input
term Z] 1 Cij0(t — 7). Similarly, (i©; + B;) is functionally
equivalent to the 1ntemal neuron parameter term, (iw; + b;).
As we investigate the dynamics of our neuron model in the
following subsections, we will witness the oscillatory dynamics
introduced in the system by the © term, as is characteristic of
resonate-and-fire neurons.

C. Steady-State Characteristics

The first step to emulate a spiking neuron in the microring is
to show excitable dynamics. Excitability occurs when a pertur-
bation from a system’s rest state results in a large excursion of
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Fig. 3. Dynamics of characteristic class II excitability. (a)-(c) show the tem-
poral evolution of output power and (i)-(iii) show the corresponding phase
space portraits of cavity light amplitude (u), in response to static input power
to the MRR. The input power increases from top to bottom. The titles of (a)-(c)
note the corresponding simulation parameters (normalized input power (Pr ),
normalized frequency detuning (J), saturable absorption lifetime (7g4) and
free-carrier lifetime (7.) in picoseconds.

physical variables, i.e. output light in our case, followed by an
eventual rest back to the equilibrium. In [23], the authors show
the existence of a class II excitable system in a silicon microdisk
close to a regime of self-pulsation. Self-pulsation refers to the
phenomenon where light oscillates between two output states in
response to a constant input light power. In addition to Ref. [23],
it has also been previously reported in several other photonic
cavities [55], [64].

Motivated by their results, we look for a self-pulsation regime
in our device. To do that, we characterize the temporal dynamics
of output light in response to a continuous wave (CW) optical
input by solving the ODE:s in (1), 2. Fig. 3 shows the temporal
evolution of output power, |Fqy|? in response to different input
light powers, Py, as well as the corresponding phase portraits
of the output light amplitude, E,. Fig. 3(a) shows that in a
relatively low input power regime, the output light amplitude
decays to a steady state and the corresponding phase portrait in
the right plot shows decay to a stable fixed point. By increasing
the input power further (Fig. 3(b)), the output undergoes damped
oscillatory decay to a steady state, where the phase portrait
reveals oscillations and slow decay to a fixed point. Finally,
a relatively higher input power (Fig. 3(c)) results in a stable
oscillating output, while in the phase portrait, a stable limit cycle
is formed. This is the regime of self-pulsation, which results from
the interaction between FCD-induced blue-shift of the microring
resonance frequency and the light intensity in the MRR, much
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Fig. 4. Spiking behavior in the MRR. (top) Input light with perturbation,
(bottom) corresponding output with a spike response to input perturbation.

like in [55]. The only difference is that in our case, graphene Kerr
boosts the FCD effect, and the saturable absorption lifetime,
which determines the photon cavity lifetime, ensures that the
photon cavity lifetime is roughly the same order of magnitude
as the free-carrier lifetime. Such a transition from decay to
oscillatory decay to a stable oscillatory state is characteristic of a
class IT excitable dynamical system. Additionally, the oscillatory
decay to steady state is indicative of a resonate-and-fire neuron
behavior as discussed in the previous section.

D. Spiking Neuron Dynamics

Excitability in a spiking system is characterized by the fol-
lowing properties: 1. temporal integration of incoming pulses,
2. generation of a spike for inputs above a threshold, and 3.
asynchronous spike generation without being triggered on input.
These properties enable the repeatable nature of a spiking dy-
namical system that assures computational power efficiency and
noise robustness. We shall investigate whether these properties
exist in the hybrid microring system. Similar to [23], we look
for excitability in proximity to the self-pulsating regime. More
specifically, excitability in this case means for a constant input
power slightly below the self-pulsation threshold, if there is
a perturbation that crosses the self-pulsation threshold, it can
throw the system into a limit cycle-like state resulting in an
output spike. Fig. 4 shows a perturbed input, where the constant
power level is below while the perturbation is above the self-
pulsation threshold. The input perturbation results in an output
spike. This illustrates the excitable property of the microring
that results in spiking. Unlike the typical integrate-and-fire neu-
rons [13], [15] where upon stimulation, the output undergoes
an exponential decay to the rest state, here we find a damped
oscillatory decay to the rest state. Such a damped oscillation is
again reminiscent of resonate-and-fire neurons. To reiterate, the
oscillatory dynamics results in resonate-and-fire neurons from
the state variable being complex. Further discussion of resonate-
and-fire neuron characteristics of the nonlinear microring will
be presented later.
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Fig. 5. Output spike amplitude as a function of input perturbation amplitude
illustrating a threshold behavior.
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Fig. 6. Temporal integration. (top) Input pulse train, with closely spaced
pulses, (bottom) Corresponding output showing a single spike.

The presence of a spiking threshold is evidenced in Fig. 5,
which shows the output spike amplitude (F7,,,;) as a function of
the input perturbation amplitude F;,. Unlike typical integrate-
and-fire spiking neurons with a rectified linear unit (ReLU)
like transfer function, the transfer function here has more of
a leaky ReLU transfer function i.e. P,,; # 0 for P;, below
the threshold. The equivalent pulse energy required for spiking,
calculated by multiplying the input pulse power amplitude with
its duration is about 0.7 pJ in this device. This fares well
compared to photonic spiking neurons based on phase change
materials in [18] where they report energy consumption per
neuron of about 4 pJ. The energy consumption of an electronic
spiking neuron e.g. Intel’s Loihi neuron was reported at about
80 pJ [10]. Our photonic spiking neuron thus fares well against
the electronic approaches.

Another critical feature of a spiking neuron is temporal inte-
gration, which means the device response is proportional to the
perturbation energy i.e. power integral within some temporal
window. To check for this feature, we first study the device
response to a doublet of closely spaced input pulses, each of
whose amplitude is below the spiking threshold, shown in Fig. 6.
The corresponding output shows a single spike in response to
the input pulse doublet which illustrates that spike response
is dependent on the total energy within the input pulse. We
further investigate the temporal integration feature by vary-
ing the amplitude of the input pulse, |P;,| and measuring the
time delay between the input pulse and the onset of output
spike, ATspike. The results of this study with simulated data, and
the corresponding polynomial fit, is shown in Fig. 7. The time
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Fig. 8. Pulse energy encoding: (top) input pulse sequence with different pulse
widths, (bottom) corresponding output spikes where the input pulse energy
information is encoded into the number of output spikes.

delay is found to decay with increasing perturbation amplitude
and eventually reach a constant floor. This is consistent with
our expectation of an temporally integrating neuron — the initial
decrease in AT,k is because increasing power means the
threshold energy required to spike is reached sooner, however
after a certain point, there is an intrinsic latency due to the cavity
lifetime resulting in a low limit of ATp;ke.

While the property of temporal integration reveals that the
microring encodes the energy within the input pulses, we further
study the second-order property of pulse-energy encoding in the
microring. We first characterize the system response to input
pulses of different pulse widths shown in Fig. 8. In the short
input pulse width limit (left pulse), the system responds with
a singular spike. On the other hand, in the long pulse width
limit (right pulse), the system generates a pulse doublet. We
find that increasing the pulse width further results in bursts of
spikes. With identical input peak power, the pulse width is a
measure of the pulse energy; these results reveal the pulse energy
encoding feature of the spiking dynamical system. Additionally,
the ability of the system to generate spike bursts, where the
inter-spike timing encodes input pulse information, is valuable
for reliable synaptic transmission between neurons as well as
selective activation [65].

To further verify the resonate-and-fire neuron characteristics
of the microring, we investigate its response to the frequency of
input pulses. In [63], such neurons are said to have an intrinsic
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eigenfrequency and are thus sensitive to the frequency of the
input pulses. We simulate the device response, quantified as the
amplitude of the output spike, | P,,¢|, to input pulses of varying
inter-pulse spacing, AT'. Fig. 9 shows the simulated data points
with an overlaid damped oscillator fit function. We find a damped
periodic oscillation in the output spike amplitude as a function
of inter-pulse spacing. The oscillation decays in the long inter-
pulse spacing regime. This periodicity suggests that the neuron
response has some dependency on the input frequency, which is
an expected characteristic of this class of neurons.

Another important characteristic of a spiking neuron to be
networkable is cascadability, which is the ability of a neuron
to excite a subsequent neuron. A simple demonstration of this
is to feed the output of a neuron (/N7) to an identical neuron
(N3) as input, and observe the response of N,. We checked
such a configuration in simulations, and found that N, outputs
a spike in response to spike output from /N7. This showed that
an input perturbation is sufficient to trigger spike response and
that the shape of the perturbation doesn’t influence the output
response. However, another important condition to satisfy is gain
cascadibility, which means the ratio of the amplitude of output
spike to the amplitude of input perturbation has to be > 1. This
cannot be satisfied in an all-optical device with some inevitable
optical loss. For a neuron with finite loss, the input power F;,
required to trigger a spike response from n neurons diverges as
n becomes large. While this may be an issue, there might be
clever ways to circumvent around it — e.g. one can operate the
neuron with two optical sources in a pump-probe scheme where
one source provides the optical CW pump to each neuron, while
the other the perturbation (or spike) from the previous neuron.
This scheme of individually pumping each neuron can ensure the
neuron is always operating close to the spiking threshold, which
will permit operation of small networks. On-chip waveguide
amplification can further supplement the optical powers for
realizing larger scale systems [66]. This line of investigation
will inform the future direction of this work.

IV. COMPARISON OF PHOTONIC SPIKING NEURONS

In this section, we will delve into the merits and drawbacks of
various spiking neuron devices in the context of implementation
in a large network. Of course the overall performance of the
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TABLE III
PERFORMANCE METRICS OF STATE-OF-THE-ART PHOTONIC SPIKING NEURONS

Footprint [pm?]
>600x200

Device Platform Energy per pulse (pJ)  Firing rate [GHz]
DFB Laser [70] InP 50 ~2
InGaAsP-C-Si 75 4 40

Graphene laser [13]

Microdisk Laser [44] InAsP-Si .02 1 257
RT-PD [71] InGaAsP 50 0.11 600
VCSEL [16], [72] Discrete 0.4 1 40,000
2D PhC [24] InP 2 0.005 500
MRR [23] Si 6 0.005 100
PCM-based cavity [18] ~ SiN 4 0.02 36007
Graphene-Si MRR Si 0.7 40 100

network will depend on factors outside the neuron. Network
architecture determines the number of interconnecting synapses,
which scale quadratically with the number of neurons (in a fully-
connected configuration). So for a large network, costs associ-
ated with synapses may overwhelm the overall network costs.
However, here we limit our focus to spiking neurons themselves.
To this goal, we have identified relevant performance metrics,
such as energy consumption, neuron firing rate i.e. processing
speed, latency and footprint. We compare a representative subset
of optoelectronic and all-optical devices against these metrics as
enlisted in Table III.

First, we compare the devices on a simple scale of physical
size. This can be the primary constraint in edge computing
devices. Integrated devices are naturally better than discrete ones
in this regard as can be seen in Table III. Within integrated
devices, platform-specific properties like optical material loss
and refractive index further limit the footprint. Passive silicon-
based devices tend to be the most compact due to the high index
of silicon. Incidentally, these devices host all-optical spiking
neurons. Additionally, electrical components, like photodetec-
tors, interfacing optoelectronic devices can further add to their
footprint.

The next consideration is firing rate, or alternatively, the
processing speed of a spiking neuron. Firing rate determines the
temporal resolution of the spike-based processing. High-speed
(> GHz) processing is where neuromorphic photonics can really
outshine electronics, which makes processing speed a major
metric to consider. All-optical devices relying on slow nonlinear
phenomena like thermal effects, are the slowest ones. Excitable
lasers can operate up to a few GHz timescales. For higher
speed needs, passive silicon-based all-optical graphene based
neuron proposed in this work stands out as the most promising
candidate.

Finally, we compare the energy consumption associated with
the devices enlisted here. The values shown in Table III are
either reported directly from the cited literature or calculated
using the reported parameters. One could naively expect that
optoelectronic devices have significantly lower energy costs than
all-optical devices, considering the high-power requirements of
nonlinear optical processes. However, once the cost of optoelec-
tronic conversion is factored in, the difference is not as dramatic
as one would expect. Among the devices shown in Table III,
optoelectronic laser-based devices have higher energy require-
ments on average than all-optical ones. In principle, the energy
consumption of cavity-based all-optical devices can further be
reduced by implementing photonic cavities with smaller mode
volumes like photonic crystals.
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Overall it is fair to say that there is no ideal spiking device
that beats everything else across all metrics. There are addi-
tional challenges in both optoelectronic as well as all-optical
approaches to really portray the full picture. For optoelectronic
devices, we did not consider the speed limits due to parasitics
in electronic links that can bottleneck the neuron processing
speed. This may be addressed by heterogeneous integration with
a CMOS chip via flip-chip bonding [70] allowing for use for
high-speed CMOS electronic components with a low parasitic
pathway. Similarly, in all-optical devices, optical power cascad-
ability is a concern, as optical power is inevitably lost at each
stage of the network. In the future, waveguide amplifiers [71]
may alleviate these concerns by allowing for amplification every
few stages.

V. TRAINING SPIKING NEURAL NETWORKS

Training refers to adjusting synaptic weights in the process
of optimizing for a cost function, which can correspond to
the difference between the target and actual output of a neu-
ral network. In the context of artificial neural networks, neu-
rons represent static, continuous-valued nonlinear activations
that are differentiable, which means they can be trained using
gradient-descent based supervised learning algorithms like er-
ror backpropagation [72]. In contrast, spike-based processors
operate on dynamic temporal data that are an accumulation
of delta function-like spikes that are non-differentiable, hence
conventional backpropagation algorithms don’t apply. Despite
the touted benefits in energy-efficiency and noise robustness
of SNNss relative to ANNS, the performance of SNNs on most
machine learning tasks lag behind the ANNs primarily due to
the issue of trainability [27], [72]. This is further aggravated by
the scarcity of dynamic dataset compatible to SNNs in contrast
to the availability of large labelled static datasets for ANNs. Of
course this impediment to SNN has attracted a lot of interest
from neuroscientists and computer scientists alike to develop
training algorithms catered to spiking neural networks. These
algorithms can broadly classified into two categories:

e Conversion-based algorithms: this approach aims to lever-
age backpropagation methods in ANNs by training the net-
work as an ANN and then converting to an SNN [73], [74].
Essentially, the static input (eg. pixel intensity in an image
classification task) is converted to a spike train based on
encoding schemes, such as rate encoding [75]. An activa-
tion function that functionally resembles that of a spiking
neuron, such as a rectified linear unit, ReLU, is chosen.
Once training is done, weights are normalized to avoid
arbitrarily high firing rates and the spike output is converted
back to a static, analog value using the complementary
decoding scheme. The merit of this approach is that it
circumvents the difficulties of training temporal signals
and can use existing frameworks like TensorFlow [76]
and Pytorch [77]. However, it suffers from the vanish-
ing forward spike propagation problem where firing rates
progressively decrease through network layers. Also, you
pay for the training convenience in longer inference times
owing to the conversion [27]. This approach has been
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considererd in photonic systems simulations — Ref. [78]
show an MNIST image classification using a rate encoding
approach. Ref. [79] even showed online rate encoding
using a VCSEL based neuron.

o Spike-based algorithms: this approach attempts to train
using temporal data, without any conversion, and thus
benefits from the sparsity and efficiency of spiking neural
networks. Neuroscientists have identified various learn-
ing rules, based on neuroplasticity in actual biological
synapses, known as spike-timing dependent plasticity
(STDP). In STDP, weight is adjusted in response to the
relative time difference between spikes of the connect-
ing neurons. It has been used for both supervised and
unsupervised learning. The spatial and temporal local-
ity of STDP endows network-level effects such as re-
duced latency. The early works used STDP to perform
spike based learning in a supervised manner, examples
include ReSuMe [80] and Tempotron [81]. STDP has been
abundantly demonstrated in photonic systems, starting out
in [82] to more recent implementations in VCSEL-based
systems [83], [84], [85], [19]. More recent supervised
algorithms mirror backpropagation by approximating a
differentiable function as the spiking nonlinearity and us-
ing gradient-descent based algorithms to optimize for the
target spike train. Examples include SpikeProp [86], Nor-
mAD [87]. There have been no implementations of such
algorithms in photonic systems to the best of our knowl-
edge. Typically, in software, unsupervised algorithms tend
to have inferior performance over conversion-based super-
vised learning.

A. Benchmark MNIST Handwritten Digit Classification
Simulation

Here we employ a conversion-based algorithm to do a system-
level analysis of our proposed spiking neuron. We simulate a
three-layer fully-connected spiking neural network and study its
accuracy in abenchmark MNIST handwritten digit classification
task. The scheme is similar to typical artificial neural networks
except the nonlinear units in the input and hidden layers are
the spiking neuron units, and the inputs to the network are
spike-based time series instead of analog values. This sim-
ulation is done using the Bindsnet simulation package [88]
which allows simulating spiking neural networks within the
Pytorch framework. The schematic of the network is shown in
Fig. 10(a). Each input image in the MNIST dataset is composed
of 28x28 pixels. First, each pixel in a given image is encoded
using the Poisson encoding transform in Bindsnet and converted
to a spike-based time series i.e. a format comprehensible by the
spiking neurons. Fig. 10(b) shows the time series representation
of the 784 pixels on the sample image. The frequency of the time
series is proportional to the pixel intensity.

Each time series is then fed into an input layer with 784
(=28x28) neuron nodes. To emulate the spiking nonlinearity
in each node, we employ the transfer function of the spiking
neuron (shown in Fig. 5) as the nonlinear activation function. The
input layer is fully connected to a hidden layer with 64 nodes,
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Fig. 10. Benchmark MNIST handwritten digit classification simulation using

spiking nonlinear nodes. (a) Schematic of the simulated classification network,
showing a sample MNIST dataset image being encoded into a time series, and
fed into a 3 layer fully-connected network. (b) Time-series equivalence of the
encoded image in (a): each row corresponds to the time-series for a given pixel
in the input image. (c) Inference classification accuracy as a function of epoch
count.

resulting in 784x64 = 50176 trainable parameters. The hidden
layer is subsequently fully-connected to an output layer with
10 nodes, corresponding to the 10 possible digit label outputs,
resulting in additional 64x10 = 640 trainable parameters. We use
the log softmax function as the nonlinearity of the nodes in the
output layer, which is typical for such multi-label classification
networks.

Ateach time step, the input value for a given pixel is either a 1
or a 0 corresponding to the presence or absence of a spike event.
The input time series propagates through the network, and results
in an output neuron in the output layer to spike at the highest
rate for a given image. Then this neuron is compared to the label
associated with the image and a negative log likelihood loss
is calculated. While training the network, a stochastic gradient
descent-based optimizer (Adam) was used to minimize the loss.

In the inference stage, accuracy is computed by calculating
the percentage of images that were correctly classified by the
network. Fig. 10(c) shows the inference accuracy as a function of
epochs, where the network is shown to converge to 93% accuracy
in about 10 epochs. This result demonstrates the feasibility of
using the proposed spiking neuron in a spiking neural network.
Our simulated network is much smaller than the one proposed in
a similar work [78], where 500 neurons were used in the hidden
layer, although we achieved a slightly lower accuracy.

B. Training in Photonics

As discussed earlier, training spiking neural networks in it-
self remains an unresolved problem. The challenges compound
when we translate the problem into the context of photonics,
where process variations and operational constraints can fur-
ther aggravate performance. Nevertheless, photonics can benefit
from advances in algorithm research within computer science
or electronics community, but it will be critical to judge which
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approach translates nicely to photonics. Here we present our
outlook on the approaches to training photonic spiking neural
networks.

Conversion-based training algorithms based on rate-encoding
strategies have had better performance over spike-based ones for
conventionally ANN-oriented tasks like classification. Due to
the convenience of this approach and the availability of dataset
for classification tasks, this will likely be the popular approach
for researchers to demonstrate the functionality of their spiking
devices in the near term. However, this approach only allows
for offline training and online inference. And we are yet to see
how this approach will pan out when actually implemented on a
photonic hardware. Robust characterization of photonic devices
can be expected to be incredibly difficult, which means the
discrepancy due to variations in hardware operation will cause
performance degradation during online inference. Additionally,
the conversion steps will add to the inference time, which may
eliminate applicability in real-time applications.

The ultimate way to ensure error-resilience to process vari-
ation and noise in photonics is online learning. Such approach
can allow for algorithm-hardware co-design such that hardware-
induced errors can be reliably mitigated. As discussed before,
spiking hardware is not compatible with global learning rules
like back propagation. Instead, to enable online learning in
spiking hardware will require spatially local learning rules.
Besides online learning, local learning allows leveraging the
full potential of spiking networks, in terms of low inference
latency. A common local learning rule in spiking, as we’ve
discussed before, is STDP. STDP in photonic hardware have
exclusively been shown in active platforms, using cross-gain
modulation in SOAs [89], [90], vertical cavity SOAs (VC-
SOAs) [84], [91]. As discussed earlier, for photonic spiking
to be a viable technology, compatibility to CMOS is crucial.
The singular proposal of implementing STDP on a passive
photonics platform was in Ref. [92] using nonlinear optical
effects. Ref. [19] used an STDP-like learning approach through
a feedback loop mechanism. While STDP is amenable to local
learning, it does not really optimize towards a global objective
function, and has had lower accuracy when compared to back-
propagation methods [93]. Higher performance may be obtained
by using local learning rules that can allow for some form of
global optimization through local weight update rules, akin to
the Hopfield network that always seeks to minimize the global
energy function. We thus foresee algorithms with local learning
with a global optimization scheme to be the most suitable route
when it comes to training photonic spiking hardware.

VI. APPLICATION DOMAIN OF PHOTONIC SNNS

Most application-oriented works in spiking neural networks
have resorted to classification tasks as a means to compete
against artificial neural networks. However, due to the lack of
adequate training algorithms for SNNS, they perform relatively
poorly in terms of accuracy. SNNs are underutilized if limited
to such classification cases; their temporal encoding feature is
better suited to applications with sparse dynamic data. Sample
applications include natural language processing, event-based
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sensing and processing (high-speed navigation and localization:
object tracking, scene reconstruction), etc. which would be pro-
hibitive to carry out in conventional ANNS in an energy-efficient
manner.

Event-based sensors output data in the form of spikes and
spike-based processing naturally fits into the task of processing
signals from such sensors. Applications within event-based sens-
ing span tracking, robotics, object tracking, etc [28]. However,
implementing application-oriented spike-based processing on
a spiking hardware remains largely outstanding, except for a
few works — Ref. [94] showed the use of TrueNorth, a spiking
electronic hardware, for real-time gesture recognition from a
dynamic vision sensor. There have not been any demonstrations
of such applications in a spiking photonic hardware yet. The
low-latency, high energy efficiency and processing speed of
photonics makes it even more suitable for such applications.
For instance, autonomous driving simultaneously requires low
power and high speed processing, where conventional ANNs
have significant computational overhead and latency [95]. An-
other application can be brain-machine interfaces since SNNs
can process biological spikes without transformation and offer
low energy consumption, low latency, low thermal dissipation as
required by these systems [96]. Finally, the simultaneous high-
speed and low power operation of spiking neurons can be ben-
eficial for high-speed radio-frequency (RF) signal processing.
Cognitive radio networks require high-speed decision making
for resource allocation, and it has been shown in simulation that
the spatio-temporal dynamics of spiking networks can enable
such functionality [97].

Even with classification-like tasks, SNNs may enable contin-
ual learning that ANNSs are incapable of [27]. In deep learning
models based on continuous-valued neurons, the network adapts
to new datasets, and forgets old patterns in the process. This
is in stark contrast to the human brain where memory tends
to be permanent, barring any injuries or disease. With the ad-
ditional temporal dimension in SNNs, SNNs may potentially
enable continual learning [27]. Applications beyond the reach
of conventional ANNs and spiking electronics are the real oppor-
tunities where photonic spiking hardware can fully demonstrate
its computational might.

VII. CONCLUSION

Spiking neural networks offer the possibility of computa-
tionally powerful, noise-resilient next-generation neuromorphic
processors. However, conventional computers are incompetent
for such a distributed processing model which advocates for
a specialized hardware. Electronics faces fundamental bottle-
necks in interconnectivity and bandwidth, and presents an op-
portunity to capitalize on photonics. Innovations in developing
photonic spiking hardware has lasted just over a decade, and we
may now be at the cusp of enabling a real technological platform
capable of real applications.

The landscape of photonic spiking neurons can broadly be
classified into optoelectronic devices including excitable lasers
and all-optical devices, including nonlinear photonic cavities.
Laser-based devices on discrete or active platforms may not
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be as conducive to scalability as the CMOS-compatible de-
vices. To this end, we have proposed a novel spiking neuron
design based on a graphene-on-silicon microring resonator. We
have presented preliminary simulation results showing spiking
neuron-like behavior of the microring device, which arises from
the interplay of nonlinear optical effects in both graphene and sil-
icon. While the exact architecture of the interfacing synapses is
not clear yet, we expect it to be a coherent, i.e. single wavelength,
device to ensure compatibility with the MRR neuron. It may be a
waveguide or a mach-zehnder interferometer (MZI) with tunable
absorptive or refractive elements using phase-change materials
or metal heaters or graphene.

As we widen the lens from devices to systems based on
photonic spiking hardware, we will need to consider algorithms
that can optimize the performance of the network for a given
application while ensuring resiliency to process variations and
noise in hardware. Local online learning rules can be a good
avenue for exploration that may be able to accommodate for the
needs of photonic hardware. Finally, it is important to carve out
the application space of photonic spiking neuron technology —
likely outside the scope of ANNs and spiking electronics. These
might include event-based sensing applications, autonomous
control, etc. Only once photonic spiking neurons can enable
applications beyond what was previously possible with spiking
electronics or ANNs will they be worth the research efforts
spent on them. The confluence of innovations in spiking neuron
devices and in algorithms paints a hopeful future for what is
ahead.
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