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Abstract
Recent investigations in neuromorphic photonics exploit optical device physics for neuron models,
and optical interconnects for distributed, parallel, and analog processing. Integrated solutions
enabled by silicon photonics enable high-bandwidth, low-latency and low switching energy,
making it a promising candidate for special-purpose artificial intelligence hardware accelerators.
Here, we experimentally demonstrate a silicon photonic chip that can perform training and testing
of a Hopfield network, i.e. recurrent neural network, via vector dot products. We demonstrate that
after online training, our trained Hopfield network can successfully reconstruct corrupted input
patterns.

1. Introduction

The binary nature of conventional digital computers hinders the design of direct one-to-one maps between
massively parallel neural systems and the digital machine [1]. An alternative way uses specialized analog
machines, where the operations of a massively parallel neural architecture are embedded in the hardware
itself. Analog devices have shown to perform efficient operations based on their device physics [2–5].
Therefore, an analog computer would be more suitable to model analog structures such as neurons. Thus,
analog special-purpose hardware can be designed to emulate the behavior of artificial neural networks
(ANNs).

One of the primary bottlenecks of digital networks’ implementations is efficiently computing the matrix
multiplications required for training and inference [6, 7]. Since the field of artificial intelligence (AI) is
mostly perceptron-based [8], matrix multiplications became its core operation. Most significant advances in
AI have been achieved using a perceptron as an artificial model of a neuron. Perceptrons encompass the most
general functions of biological neurons, which can be summarized as weighted-additions nonlinearly
transformed by activation functions [9]. Weighted-additions also represent the core operation for dot
products between matrices. Therefore, dedicated hardware accelerators for perceptron-based neural
networks would be designed to perform operations between matrices.

Dedicated analog hardware for ANNs would require to physically model every single individual
component of such networks. This is an expensive demand considering that modern deep networks sizes
scale up to thousands (or millions) of neurons to solve AI related tasks; for example, Google’s state-of-the-art
large-scale language model BERT is modeled by 110 M parameters which describe neurons [10]. In order to
overcome such a challenge, the high speed and parallelism that analog photonic systems can achieve makes
them natural candidates for efficient brain-inspired computing [11, 12]. In this work, we present a photonic
integrated circuit able to perform online training and testing of a perceptron-based ANN for pattern
reconstruction. We introduce a Hopfield network [13] with a simple training and testing scheme based
around matrix multiplications. The task consists of training and testing this recurrent network three times to
recognize three different faulty patterns. These patterns are represented as 4× 4 matrices that model the
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Figure 1. (a) Schematic diagram of a 4× 4 Hopfield network. Images of (b) numbers {0, 1, 2} and (c) corrupted versions of the
same numbers.

image of numbers 0, 1 and 2 with some defects. The motivation behind choosing a Hopfield network is that
it can solve complex tasks with a simplified training and testing methodology.

Emerging technologies based around photonics attempt to enhance computing performance for AI
applications. Due to their speed, energy efficiency and reconfigurability, such matrix multiplications will be
performed using photonic devices. In particular, we consider the use of the broadcast-and-weight protocol as
it has demonstrated to be able to carry out fully parallel matrix operations using wavelength division
multiplexing [11, 14, 15]. This approach uses micro-ring resonators (MRRs) to directly encode different
matrix elements as amplitude values in parallel optical channels [16].

In order to train and test a Hopfield network in our platform, we use a bank of off-chip tunable lasers
and on-chip silicon MRRs to implement the elements of each matrix considered for both stages. Both the
lasers and the MRRs encode matrix elements as optical amplitude modulated values. Tuning the power of a
laser allows for a straightforward representation of matrix elements in optics. And tuning a given MRR on
and off resonance changes the transmission of an optical signal through that MRR, effectively multiplying
such a signal with a desired value. MRR-based architectures have proven to solve pattern-recognition related
tasks as it can be found in the work of Feldmann et al with spiking-based neural nets [17]. In our present
work, we will use a perceptron-based network to perform a pattern reconstruction task of corrupted patterns
using a bank of on-chip MRRs.

2. Hopfield neural network

A Hopfield architecture is a recurrent neural network typically used as an associative memory [18]. Invented
by J Hopfield in 1982 [13], this network memory property allows for pattern reconstruction of faulty
datasets. In figure 1(a), we show a 4× 4 symmetric Hopfield network, where each perceptron-based neuron
is represented by each xi-circle. The synaptic weights wi,j correspond to all-to-all connections between
neurons, defined by bipolar numbers {−1,+1}. This fully connected network has inputs and outputs
described by vectors whose elements are also bipolar numbers. The activation function is modeled by a sign
function, sgn(O) = +1, ifO ⩾ 0; and sgn(O) =−1, otherwise. An input pattern of dimension 4× 1 feeds
all nodes simultaneously. In the case where an input pattern is represented by a 4× 4 matrix, then each 4× 1
vector composing such a matrix should be inputted separately. Therefore, 4 iterations would be required to
complete this task. Figure 1(b) shows three examples of 4× 4 input patterns corresponding to the images of
numbers {0, 1, 2} that our Hopfield network has to memorize.

The network in the training stage uses these patterns to calculate the elements wi,j of three weight
matrices — one matrix per image. For this particular task a weight matrixW can be estimated by
multiplying every input pattern x with itself, and then set up all diagonal values equal to zero,

W= xT · x− I, (1)

where T is the transpose function and I the identity matrix. Since the diagonal values are squared, they
should be removed from the Hopfield network’s memory to avoid keeping incorrect contributions in it.
Notice that this step is important when we store multiple patterns in the network’s memory. However, if only
one pattern xk is stored in the network’s memory per task k, then the weight matrix can be calculated as
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Wk = xTk · xk. In this work, we will store only one pattern k in memory per task, therefore we can skip the
diagonal elements subtraction step, and define k= 0, 1, 2 related to each image {0, 1, 2}.

The inference stage consists of the reconstruction of partially broken input patterns. In figure 1(c), three
patterns corresponding to corrupted versions of images {0, 1, 2} are shown. The task of the network is to
reconstruct an image based on a stored pattern similar to the corrupted input. For this to happen, we
multiply a corrupted image χk by the weight matrixWk,

Ok = χk ·Wk, (2)

where Ok is the result of the 4× 4 matrix multiplication. Then, the output pattern is obtained once a sign
activation function is applied to that result,

yk = sign(χk ·Wk). (3)

The results of such experiments are determined by directly comparing output yk and target xk through the
mean absolute error (MAE),

MAE=
1

N

N∑
i=1

|yik − xik|, (4)

where N is the number of pixels per image. In this experiment we found that the network could reconstruct
the numbers with high accuracy (1–MAE)%, i.e. low MAE. The corrupted versions of numbers 0, 1 and 2
were reconstructed with accuracies of 100%, 93.75% and 93.75%, respectively.

3. Photonic vector dot product

As the operations described above are based on dot products between vectors containing four elements each,
we will demonstrate that such operations can be performed using a bank of four on-chip silicon MRRs. Let
us define two vectors {A,B} that will represent any theoretical set of vectors considered in the forthcoming
experimental dot products (A ·B). In figure 2(a), the elements of such vectors are experimentally
represented. To encode elements of the vector A, we vary the power intensity Pi (with i= 1, 2, 3, 4) of four
tunable lasers. Additionally, each laser provides optical signals to the on-chip circuit at wavelengths λi

through a set of three 50/50 beam couplers and an erbium-doped fiber amplifier (EDFA). These devices
multiplex and amplify optical signals of different wavelengths coming from the lasers before they enter the
chip. The EDFA is utilized to match the launch power of the lasers with the power coupled on to the chip,
which was attenuated by the beam couplers.

The elements of the second vector B are implemented by four on-chip add-drop MRRs. MRRs are
devices capable of trapping light coming from the input (IN) port at frequencies λi at which they resonate,
according to their physical characteristics. The resonance frequency can be obtained from the wavelength
equation λR = 2πRneff/m, where R is the radius of the ring,m is an integer number and neff is the effective
refractive index. The on-chip weight bank shown by figure 2(b) is fabricated on a silicon-on-insulator wafer
with a silicon thickness of 0.22 µm and a buried oxide thickness of 2 µm. Each MRRi has an
aluminum-based pad where the voltage will be applied and a common ground. These rings have slightly
difference ring radii ({8.0, 8.1, 8.2, 8.3} µm) to avoid resonance collision. The physical distance between one
MRR to the next MRR is 50 µm. The quality factor of the MRR is∼6000 for a gap of 0.2 µm between the
ring and the bus waveguides. Each ring was designed with an n-doped heater [20, 21]. The heater was
designed with an n-doped silicon rib waveguide on top of SiO2, where two N++ doped overlayers on the
side of the waveguide (750 nm of separation) serve as contacts. By applying a voltage V i on such contacts, we
can thermally tune the waveguide. Therefore, this n-doped heater functions as a thermo-optic tuner. Also, it
can act as a detector by lowering the electrical resistance across it.

A wide variety of intensity values can be represented by an MRR through the tuning of the waveguide
refractive index by means of an applied voltage V i. The vector elements A and B are transferred to the
experiment from the computer (PC) via power intensity Pi (tunable lasers) and applied voltage V i (Keithley
2600 source meters). The summation of the four products is outputted by the photodetector, connected to
the through (THRU) port of the last MRR, and stored in the PC. There, the activation function is applied
and the prediction error is estimated.

In this work we only use IN and THRU ports to perform dot products. Figure 2(c) shows the optical
spectrum of the on-chip MRR bank obtained with the fine sweep function of an optical spectrum analyzer
(OSA), Aragon BOSA 400. The transmission vs wavelength profile with no-voltage applied to their
embedded heaters. This configuration allows for analog parallel dot products using light as a medium for
data processing.
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Figure 2. (a) Schematic illustration of the photonic vector dot product architecture between vectors A and B. The elements
of vectors A and B are implemented as power values of tunable lasers and transmission amplitudes of MRRs, respectively.
A photodetector performs the summation part of the weighted addition. The data is collected by the PC where the activation
function and the error are calculated. Data bidirectional flow from the PC to the devices (tunable lasers, power-meter and voltage
sources) is performed through GPIB-to-USB interface adapters, and it is controlled by lightlab—an open source software
developed by Princeton University [19]. (b) Picture of the on-chip MRR-based weight bank fabricated by Advanced Micro
Foundry PTE LTD. The on-chip area covered by the weight bank is 540× 760 µm. (c) Measured transmission vs wavelength plot
of its through (THRU) port showing four resonance peaks (RPi, with i= 1, 2, 3, 4).

Figure 3. THRU-port measured: (a) transmission values at wavelengths RP1 = 1540.5 nm, RP2 = 1541.0 nm, RP3 = 1541.7 nm
and RP4 = 1542.4 nm, as functions of the input power.

3.1. Experimental look-up tables
In order to experimentally represent elements of the two vectors {A,B}, the laser power intensity Pi as well
as the the driving voltage V i applied to the MRRs have to be properly chosen for the tasks. Pi and V i are
stored in the PC memory, and get transferred from it to the tunable lasers and voltage sources by
GPIB-to-USB interface adapters. The construction of look-up tables for each device facilitates the process of
properly chosen Pi and V i for the task under consideration. To optically encode A elements we create a
look-up table by sweeping the power of our Pure Photonics PPCL600 micro-ITLA tunable lasers around
the resonance peak of each MRR as shown by figure 3(a). In the figure, the different curves correspond
to different laser powers that are specified in the abscissa of figure 3(b), and the ordinate represents
the evolution of transmission values corresponding to all resonances (RP1,RP2,RP3,RP4).
The transmission-voltage profiles show monotonous increments up to an input power of 11 dBm. After that
point, RP3 and RP4 start behaving non-linearly. The source of non-linearity is the result of the interaction
between high levels of optical power and the silicon material. High optical power levels in silicon result in
non-linear effects like the Kerr effect and two-photon absorption which can result in free-carrier dispersion
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Figure 4. THRU-port transmission vs voltage profiles at each resonance peak RPi for driving voltages applied to: (a) MRR1,
(b) MRR2, (c) MRR3 and (d) MRR4.

and free-carrier absorption. These effects change the refractive index of the MRR affecting its resonances and
desired weight value. Same happens with RP1 and RP2 after input power surpasses 13 dBm. This experiment
shows how A elements can be represented in the optical domain as power intensities Pi. In this example, we
represented 10 possible values that our processor can use for computation. ForN = 10, the bit resolution that
represents the number of vector elements that can be optically encoded by the tunable lasers is log2(N)≈ 3.3.
For experiments that require a higher bit resolution, other alternatives to optically encode A elements should
be found. Therefore, for experiments that require a higher bit resolution, alternative venues to optically
encode A elements should be found.

The second look-up table will correspond to optical elements of vector B. A driving voltage V i applied to
each MRR will allow us to shift the resonance peak around laser wavelength λi. Figure 4 shows plots of
transmission as function of the applied voltage for the four on-chip MRRs used in this experiment.
The transmission vs wavelength sub-plots were obtained by using an Aragon BOSA 400, where the OSA’s
internal tunable laser was used to finely characterize each MRR individually. In all panels of the figure, a
monotonous increment of the transmission-voltage profiles is revealed for a constant input power of 9 dBm.
In particular, figure 4(a) shows how RP1 transmission value increases with a driving voltage to MRR1, while
{RP2,RP3,RP4} remain constant since 0 V are applied to all other MRRs. This behavior is maintained up to
an applied voltage of 0.4 V on MRR1, and 0 V for all other MRRs. An interesting phenomenon occurs for
applied voltage values over 0.4 V, where {RP2,RP3,RP4} transmission values start increasing with the
increment of the voltage. We associate this phenomenon with thermal crosstalk from MRR1 that reaches
neighbor MRRs [16]. Such a thermal crosstalk can also be seen in figures 4(b)–(d)), where the driving
voltage was applied to MRR2, MRR3 and MRR4, respectively.

We therefore consider a driving voltage of 0.4 V as a threshold value to avoid thermal crosstalk related
distortions. This experiment shows that at least 20 values can be represented per MRR through driving
voltages V i—which translates in a bit resolution of 4.32. The existence of thermal crosstalk between MRRs
separated by a physical distance of 50 µm reduces the measured bit resolution of MRRs by half. However, if
we choose a range of driving voltages V i∈[0, 0.5], and smooth the sweep in that range, a higher bit resolution
with insignificant thermal crosstalk can be achieved as demonstrated in reference [16].

In the following, these results will be used as a base to establish look-up tables for the Hopfield network.
Such tables need to be properly constructed for each experiment. For instance, a photonic processor with less
than 8 bits of resolution could not solve CIFAR-10 (training and testing included) [22]. As it will be
demonstrated in the following section, the bit resolution of our photonic processor should not limit the
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Figure 5. Training stage of the Hopfield network to memorize images 0, 1 and 2. The first two columns show matrices xTk and xk
defined by laser power and driving voltages, respectively. The next two columns show activation functions which allow for direct
comparison between theoretical, and experimental weight matrices.

performance of the Hopfield network for pattern reconstruction, as it only requires two bits of resolution
from our devices per vector dot product.

4. Online training of the Hopfield network

As described in section 2, training the Hopfield network to recognize one pattern xk at a time requires the
estimation of a weight matrixWk through the dot product between input matrices xTk · xk. In the first two
columns of figure 5, we show how this series of experiments can be done. To elaborate further on one
example, let us define the image of number zero as a 4× 4 matrix xk constructed with {−1,+1}, followed by
the same matrix but encoded with driving voltage values V0(V):

x0 =


−1 +1 +1 −1
+1 −1 −1 +1
+1 −1 −1 +1
−1 +1 +1 −1

→ V0(V) =


0.00 0.28 0.28 0.00
0.09 0.00 0.00 0.09
0.40 0.00 0.00 0.40
0.00 0.48 0.48 0.00

V. (5)

This experiment takes into account that: (i) number−1 is encoded through driving voltages of 0 V, and
number+1 is encoded by driving voltages of ̸=0V; (ii) any driven voltage set applied to two adjacent MRRs
should have different values. This trick allows us to avoid very high levels of thermal crosstalk. For instance,
such levels can be found when we try to encode the first column vector [−1,+1,+1,−1] as
[0.00, 0.40, 0.40, 0.00]. Here, the adjacent rings MRR2 and MRR3 will generate an important amount of heat
which reaches adjacent MRRs. However, if the first column vector [−1,+1,+1,−1] is encoded as
[0.00, 0.09, 0.40, 0.00], MRR1 and MRR4 do not get strongly affected by the heat released by the two middle
rings.

The transpose of the number zero xT is experimentally implemented with different power intensities of
the tunable lasers as follows:

xT0 =


−1 +1 +1 −1
+1 −1 −1 +1
+1 −1 −1 +1
−1 +1 +1 −1

→ P0(dBm) =


8 11 11 8
11 8 8 11
11 8 8 11
8 11 11 8

dBm. (6)
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Figure 6. Accuracy ((1−MAE)%) between theoretical and experimental weight matrices for patterns 0, 1 and 2.

In this case, numbers {−1,+1} are encoded as 8 and 11 dBm, respectively. Although, for all experiments, we
considered number−1 encoded as any number in the range [7, 9] dBm, and number+1 as any number in
[11, 16] dBm. This step allows for an enhancement of the action of a particular MRR while performing the
dot product since each grating coupler has a 6 dB loss. Therefore, the estimated power coupled on to the chip
will be attenuated by a factor of 6.

The experiment starts with a calibration that is carried out by a single tunable laser to sweep the
wavelength across the range [1540, 1544] nm. This step allows us to identify where each RPi is. The next step
consists of programming the tunable lasers to match such wavelengths λi. Then, we proceed to upload values
Pi and V i from the look-up tables to the tunable lasers and Keithleys driving the MRRs, respectively. The
voltage at the photodetector is consequently recorded. Each dot product between two 4× 4 matrices xTk and
xk is carried out by our photonic processor in 16 iterations, since 16 vector dot products have to be
performed to build up matrixWk. A recalibration consisting of updating the lookup tables between sets of
iterations is not mandatory but recommended to compensate for any drift of the RPi—although the system
was found to be stable for long periods of time (∼5 h). The stability of this system can be improved by
adding a custom made temperature controller for this type of architecture.

The same process was followed with the purpose of determiningW1 andW2 for images 1 and 2,
respectively. All results were registered in the PC memory, followed by off-line post-processing. The
post-processing phase is divided in two steps: (i) implementation of activation functions, and (ii)
comparisons between experimental and theoretical weight matrices. Although training stages of Hopfield
networks usually do not apply any activation function to the weight matrix, we apply them for comparison
purposes. As we seek to compare theoretical and experimentalWk, we define piecewise activation functions
for each experimental weight matrix such that the resultant matrix is described with numbers {−1,+1}—just
like its theoretical counterpart. The third and fourth columns of figure 5 show the resultant activation
functions and weight matrices.

The result of the post-processing phase is shown by figure 6, where the accuracy (defined as the
percentage of (1-MAE)) of such an off-line experiment can be found. As it can be seen, post-processed
weight matrices reached accuracies for over 85.6%. In the case of number zero, the achieved accuracy was
100%. Given the weight matrices for all images considered in this work, we can proceed to test the network
with faulty patterns.

5. Online inference of corrupted patterns

Once the weight matrices have been estimated and compared to their theoretical counterparts, we proceed to
test inference performance. The corrupted patterns corresponding to 0, 1 and 2 are shown in the first column
of figure 7. These patterns have been encoded as laser power values in optics. Next, we use the post-processed
weight matrices obtained in the previous section to carry out this inference stage (see second column of the
same figure). Weight matrix elements have been encoded as voltage values through Keithleys driving the
MRRs. Despite the fact that some of such weight matrices may negatively impact performance, their use in
this experiment allows us to also test the training performance carried out in the previous section.

After all results were registered in the PC memory, we proceeded to implement off-line post-processing.
The activations functions and the output patterns can be found in the last two columns of figure 7. We define
piecewise activation functions for each experimental output matrix such that the resultant matrix is
described with numbers {−1,+1}. The shapes of the three output patterns show qualitatively different
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Figure 7. Inference stage of the Hopfield network to reconstruct corrupted images 0, 1 and 2. The first two columns show
matrices χk andWk defined by laser power and driving voltages, respectively. The next two columns show activation functions
which allow for direct comparison between memorized, and reconstructed patterns 0, 1 and 2.

Figure 8. Accuracy ((1-MAE)%) between memorized and reconstructed patterns 0, 1 and 2.

performances. As it can be seen, the output pattern corresponding to number zero was properly
reconstructed, while the other two images look less accurately reconstructed. The estimation of the accuracy
will help us decide whether the trained network could reconstruct all the three patterns or not.

Figure 8 shows the percentage of the accuracy corresponding to the testing stage. Here, the
reconstruction of number zero was accurately performed (100%). The reconstruction of numbers one and
two showed lower performances. For instance, the recognition of number one was the less accurate of the
three experiments (86.5%). The reconstruction case of number two was successful except for one pixel,
therefore, the accuracy reached 93.75%. A direct comparison between theoretical and experimental
accuracies shows that only the performance at reconstructing pattern one was negatively impacted.

Interestingly, both training and inference stages of the number one led to more errors than the other
numbers. It seems that for this particular configuration, symmetric matrices are better calculated than
asymmetric ones—where many MRRs are being used at once. Tasks where three MRRs are being used at
once are associated to low performances in training and testing stages. The thermal crosstalk might be
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behind issues associated with the use of several MRRs at once. Therefore, improvements should be made on
our chips to avoid such a thermal crosstalk.

6. Conclusion

We have shown that MRR-based photonic integrated circuits can implement training and inference stages of
a Hopfield network for pattern reconstruction. We demonstrated that experimental vector operations can be
successfully carried out using a set of off-chip tunable lasers and on-chip MRRs. Despite the fact that the bit
resolution can be reduced due to thermal crosstalk between adjacent rings, our experiment was not directly
affected by such a limitation as only one bit of resolution per device was required both in training and testing
stages. Thermal crosstalk was also found to be contributing to lower performances when three MRRs were
used at once. Therefore, the separation between adjacent rings will be increased in further experiments if
thermo-optic phase shifters are used. A possible solution to this problem is to actively cool down the surface
of the chip, so that the heat released by each MRR remains local. For this to happen, we would need to
change the testing methodology that we followed to perform this experiment, which is based on the use of a
DC probe and a V-groove. More improvements can be achieved if graphene-based [23] or plasma dispersion
(PN-junction) [24] modulators replace on-chip heaters, since they do not rely on heat to implement matrix
elements in optics.

The reconfigurability feature of our photonic circuits allows for the design of special-purpose analog
machines that can implement other types of ANNs as well, such as convolutional neural networks [25]. Due
to the generality of their matrix multiplication architecture, our photonic processors can potentially become
the core element of general-purpose analog computing solutions as described in reference [7].
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