
PHYSICAL REVIEW RESEARCH 1, 033030 (2019)

Takens-inspired neuromorphic processor: A downsizing tool for random recurrent
neural networks via feature extraction

Bicky A. Marquez ,1,* Jose Suarez-Vargas,2,3 and Bhavin J. Shastri1
1Department of Physics, Engineering Physics & Astronomy, Queen’s University, Kingston, Ontario, Canada K7L 3N6

2Elettra-Sincrotrone Trieste, Strada Statale 14-km 163,5, 34149 Basovizza, Trieste, Italy
3International Centre for Theoretical Physics, Strada Costiera 11, I-34151 Trieste, Italy

(Received 6 July 2019; published 17 October 2019)

We describe a technique which minimizes the amount of neurons in the hidden layer of a random recurrent
neural network (rRNN) for time series prediction. Merging Takens-based attractor reconstruction methods with
machine learning, we identify a mechanism for feature extraction that can be leveraged to lower the network
size. We obtain criteria specific to the particular prediction task and derive the scaling law of the prediction
error. The consequences of our theory are demonstrated by designing a Takens-inspired hybrid processor, which
extends a rRNN with virtual nodes. Virtual nodes are defined as time-delayed versions of real network nodes.
Our hybrid architecture is therefore designed including both real and virtual nodes. Via this symbiosis, we show
performance of the hybrid processor by stabilizing an arrhythmic neural model. Thanks to our obtained design
rules, we can reduce the stabilizing neural network’s size by a factor of 15 with respect to a standard system.

DOI: 10.1103/PhysRevResearch.1.033030

I. INTRODUCTION

Artificial neural networks (ANNs) are systems promi-
nently used in computational science as well as investigations
of biological neural systems. In biology, of particular interest
are recurrent neural networks (RNNs) whose structure can
be compared among others with nervous system’s networks
of advanced biological species [1]. In computation, RNNs
have been used to solve highly complex tasks which pose
problems to other classical computational approaches [2–6].
Their recurrent architecture allows the generation of internal
dynamics, and consequently RNNs can be studied utilizing
principles of dynamical systems theory. Therefore, the net-
work’s nonlinear dynamical properties are of major impor-
tance to its information processing capacity. In fact, optimal
computational performances are often achieved in a stable
equilibrium network’s state, yet near criticality [7,8].

Among the recurrent networks reported in current litera-
ture, random recurrent neural networks (rRNNs) are popular
models for investigating fundamental principles of informa-
tion processing. In these models, the synaptic neural links are
randomly weighted, typically following a uniform [9] or a
Gaussian distribution [10–13]. Recently, there is an increasing
interest in some particular types of random recurrent networks
with a simplified design, where just the output layers are
trained using a supervised learning rule. Such rRNNs are
typically referred to as reservoir computers, which include

*bama@queensu.ca

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

echo state networks [2] and also liquid state machines [14].
Reservoir computing provides state-of-the-art performance
for challenging problems like high-quality long-term predic-
tion of chaotic signals [2,15].

Prediction corresponds to estimating the future develop-
ments of a system based on knowledge about its past. Chaotic
time series prediction is of importance to a large variety of
fields, including the forecasting of weather [16], the evolution
of some human pathologies [17], population density growth
[18], or dynamical control as found in the regulation of
chaotic physiological functions [19–21]. In order to build a
predictor for chaotic systems, most common techniques can
be divided into the following groups [22]: (i) linear and non-
linear regression models such as autoregressive-moving aver-
age, multiadaptive regression spline [23], and support vector
machine [24]; (ii) state-space-based techniques for prediction
of continuous-time chaotic systems, which utilize attractor
reconstruction and interactions between internal degrees of
freedom to infer the future [22,25–28]. Attractor reconstruc-
tion method is based on the embedding of the original state
space in a delay-coordinate space [29]. (iii) The connectionist
approach, including recurrent and feed-forward [30,31], deep
[32], and convolutional ANNs [33]. This approach usually
comprehends the design of ANNs using large amounts of
neurons to process information [34].

The high dimensionality of the ANNs’ hidden layer is
commonly translated in a computationally expensive problem
when considering the optimization of such networks to solve a
task. In the reservoir computing approach such training efforts
are reduced due to the training is done on the output layer
only. However, the more neurons in the hidden layer which
are connected to the output layer, the higher the computa-
tional cost of the training step. Introducing a unconventional
methodology, we develop a state-space-based concept which

2643-1564/2019/1(3)/033030(12) 033030-1 Published by the American Physical Society

https://orcid.org/0000-0002-1644-8446
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.1.033030&domain=pdf&date_stamp=2019-10-17
https://doi.org/10.1103/PhysRevResearch.1.033030
https://creativecommons.org/licenses/by/4.0/

MARQUEZ, SUAREZ-VARGAS, AND SHASTRI PHYSICAL REVIEW RESEARCH 1, 033030 (2019)

FIG. 1. Explicit illustration of the rRNN diagram. The network
is composed by an input layer, where information yin and b enter
to the hidden layer via random input and bias weights vectors W in

and W off , respectively. The internal layer has m neurons whose
synaptic weights are defined by the elements of the matrix W .
The neurons’ nonlinear activation functions are hyperbolic tangents.
Node responses are internally fed back to the internal layer, yielding
to the recurrent architecture of the network. A readout state yout is
created via the readout weight matrix W out.

guides the downsizing of the rRNNs’ hidden layer. To achieve
this objective, we describe rRNNs and state-space-based mod-
els within the same framework. This step allows us to show
state-space patterns revealed by spontaneous reconstructions
inside the high-dimensional space of our random recurrent
network. Furthermore, we introduce a methodology based on
the Takens embedding theorem to identify the embedding di-
mensions of such input system’s spontaneous reconstruction,
and their relevance to the system’s prediction performance.

We immediately exploit our insight and devise a hybrid
Takens-inspired ANN concept, in which a network is extended
by an a priori designed delay external memory. The delay
term is used to virtually extend the size of the network by
introducing virtual nodes [35] which exist in the delay path.
We use this design to first validate our interpretation, and then
devise an advanced hybrid rRNN to stabilize a nonperiodic
neuronal model which requires 15 times less neurons than
a benchmark rRNN [36,37]. As this system is driven by a
stochastic signal, we show how our approach can leverage
properties of the underlying deterministic system even for the
case of a stochastic drive.

II. RANDOM RECURRENT NETWORKS
FOR PREDICTION

A rRNN is illustrated in Fig. 1, indicating the temporal
flow of information received by each neuron or node. Nodes
are represented by

⊕
. The rRNN consists of a reservoir of

m nodes in state xn at integer time n. Nodes are connected
through random, uniformly distributed internal weights
defined as coefficients in the matrix W of dimensionality
m×m. The resulting randomly connected network is injected
with one-dimensional (1D) input data yin

n+1 according to input
weights defined as random coefficients in the vector W in of

dimensionality m×1. The time-discrete equation that governs
the network is [2]

xn+1 = fNL
(
μW · xn + αW in · yin

n+1 + W off · b
)
, (1)

where μ is the bifurcation parameter that controls network’s
internal dynamics, α the input gain, fNL(·) is a nonlinear
sigmoidlike activation function, and b the constant phase
offset injected through offset weights, defined as random
coefficients in the vector W off of dimensionality m×1. In prac-
tice, we construct a network with m = 1000, using the MAT-
LAB routine random. Connection weights Wi, j are distributed
around zero. In order to set our recurrent network in its steady
state, W is normalized by its largest eigenvalue. The network’s
connectivity is set to one, hence, it is fully connected.

An output layer creates the solution yout to the prediction
task. In this step the network approximates the underlying
deterministic law that rules the evolution of the input system.
The output layer provides the computational result according
to

yout
n+1 = W out · xn+1. (2)

The output weights vector W out is calculated according to
a supervised learning rule, using a reference teacher/target
signal yT

n+1 [38]. We calculate the optimal output weights
vector W out

op by

W out
op = min

W out

∥∥W out · xn+1 − yT
n+1

∥∥, (3)

via its pseudoinverse (using singular value decomposition)
with the MATLABroutine pinv. Equation (3) therefore mini-
mizes the error between output W out · xn+1 and teacher yT

n+1.
As training error measure we use the normalized mean-
squared error (NMSE) between output yout

n+1 and target sig-
nal yT

n+1, normalized by the standard deviation of teacher
signal yT

n+1.
When a rRNN is used for time-series prediction of a

chaotic oscillator such as the Mackey-Glass (MG) time-
delayed system [17], it can achieve good long-term prediction
performances with 1000 neurons. Here, long-term predictions
are defined as predictions far beyond one step in the future.
The task is to predict future steps of the chaotic MG system in
its discrete-time version:

yn+1 = yn + δ

(
ϑyτm

1 + (yτm)ν
− ψyn

)
, (4)

where yτm = y(n−τm/δ), τm = 17 as the time delay, and δ = 1
10

is the step size indicating that the time series is subsampled by
10. The other parameters are set to ϑ = 0.2, ν = 10, ψ =
0.1. For any prediction task in this paper, we consider 20
network models via different initializations of {W,W in,W off}.
The prediction horizon is estimated to be 300 time steps,
defined by the inverse of the largest Lyapunov exponent of
the MG system (λMG

max � 0.0036). For such prediction horizon,
and for predicting the value of 20 different MG sequences, we
obtain the average of all NMSEs, resulting in 0.091 ± 0.013.
This performance was obtained for b = 0.2, α = 0.8, and
bifurcation parameter μ = 1.1, which was found to offer
the best prediction performance in a range of μ ∈ [0.1, 1.3].
Moreover, the network was trained with 3000 values of the

033030-2

TAKENS-INSPIRED NEUROMORPHIC PROCESSOR: A … PHYSICAL REVIEW RESEARCH 1, 033030 (2019)

MG system, with a teacher signal given by yT
n+1 = yin

n+1. We
subtracted the average of the MG time series before injection
into the rRNN, which is a common practice [38]. Then, we
discarded the first 1000 points of the network’s response to
avoid initial transients. Right after training, where W out was
determined, we connected yout

n+1 to yin
n+1 and left the network

running freely 300 time steps, indicated by the prediction
horizon.

Given that good long-term prediction performances are
obtained, we wonder what is the underlying process carried
out by the network when processing such information. To
tackle this interrogation, we take inspiration from qualitative
investigations that are common practices in image classifica-
tion tasks, where the extracted features are often identified and
illustrated together with the hidden layers that have generated
them [39]. In the following, we introduce a technique that
allows us to identify feature representations of the input
information in the rRNN’s high-dimensional space, which are
linked to good prediction performances.

III. A METHOD FOR FEATURE EXTRACTION
IN RANDOM RECURRENT NETWORKS

As shown previously, our rRNN is able to predict the future
values of 1D input chaotic data yin. Such kind of data come
from a continuous-time chaotic system, i.e., the MG system.
As it is known in chaos theory, a minimum of three dimen-
sions are required in a continuous-time nonlinear system to
generate chaotic solutions. Typically, continuous-time chaotic
solutions come from models consisting of a system of at least
three nonlinear ordinary differential equations (ODEs). How-
ever, there are other ways to obtain such chaotic dynamics.
One of those ways includes the introduction of an explicit
temporal variable to an ODE, such as a time delay with respect
to the main temporal variable. We define these models as
delay differential equations (DDEs), where a DDE is in fact
equivalent to an infinite-dimensional system of differential
equations [40]. The number of solutions to a DDE is in theory
infinite due to the infinite amount of initial conditions in the
continuous rank required to solve the equation. Each initial
condition initializes an ODE from the infinite-dimensional
system of equations. Thus, the introduction of a time delay in
an ODE, resulting in a DDE, provides sufficient dimensional-
ity to allow for the existence of chaotic solutions. For instance,
this is how the MG system can develop chaotic solutions. In
such case, one just has access to a time series from a single
accessible dimension, represented by the variable yn+1 in
Eq. (4), while all others remain hidden. Nevertheless, hidden
variables are participating in the development of the global
dynamics as well as the accessible variables.

In order to approximate a full-dimensional representation
of these oscillators, we could embed the 1D sequence yn+1

into a high- dimensional space, consequently reconstructing
its state space. A state space is defined as the geometric
space created by all dimensions of the original dynamical
system, where the evolution of the system’s state trajec-
tory is represented. Among the most practiced methods to
embed 1D information, we highlight state-space reconstruc-
tion techniques such as delay reconstruction (Whitney and

0 10 20
0

0.2

0.4

0.6

0.8

1

|A
C

F
(y

)|

IN

lag

 =-70

 =-120

 =-170

FIG. 2. Absolute value of the autocorrelation function for the
MG system together with three examples of 2D delay reconstruction
for embedding lags {−7, −12, −17}.

Takens embedding theorems [41,42]) or through the Hilbert
transform [43].

Delay reconstruction is a widely used method to complete
missing state-space information. According to the Takens
embedding theorem, the time-delayed version of a time series
suffices to reveal the structure of the state-space trajectory.
Let us represent the data in a M-dimensional space by the
vectors yn = [yn, y(n+τ0), . . . , y(n+(M−1)τ0)]†, where [·]† is a
transpose matrix and yn is the original time series. The essen-
tial parameters for state-space reconstruction are M and time
delay τ0. Embedding delay τ0 is often estimated by applying
autocorrelation analysis or time-delayed mutual information
to the signal yn. The temporal position of the first zero [25] of
either method maximizes the possibility to extract additional
information which contains independent observations from
the original signal, and hence obtain trajectories or dynamic
motion along potentially orthogonal state-space dimensions.
If successful, information of such maximized linear inde-
pendence can enable the inference of the missing degrees
of freedom [42,44,45]. On the other hand, we estimate the
minimum amount of required embedding dimensions M by
using the method of false nearest neighbors [25]. Crucially,
the following concepts are not restricted to a particular method
of determining τ0 or M.

The autocorrelation function (ACF) is often employed to
identify the temporal position τ0 used to reconstruct missing
coordinates that define any continuous-time dynamical sys-
tem. In order to show how Takens-based attractor reconstruc-
tion performs, we use a data set of 1×104 values provided by
Eq. (4). The outcome of the autocorrelation analysis reveals
that the ACF has its first zero at lag τ0 = −12. In Fig. 2,
we show the absolute value of the ACF together with three
examples of two-dimensional (2D) delay reconstructions for
three different values of the embedding lag τ0. As it can be
seen, 2D reconstructions based on lags τ0 = −7 and −17 also
unfold the geometrical object within a state space. However,

033030-3

MARQUEZ, SUAREZ-VARGAS, AND SHASTRI PHYSICAL REVIEW RESEARCH 1, 033030 (2019)

aiming at a maximally orthogonal embedding, we base our
analysis on the attractors reconstructed by exactly the first
zero of the ACF, τ0 = −12. According to the false nearest-
neighbor analysis, the minimum dimensions M required to re-
construct the MG attractor is 4. The Takens scheme therefore
provides a set of coordinates yn = {yn, yn−12, yn−24, yn−36}
which reconstructs the state-space object.

As a matter of fact, Takens embedding technique can be
interpreted as a classical method to extract feature repre-
sentations yn from the original sequence yn. Accordingly,
comparable attractor reconstruction inside our rRNN’s state
space could be identified. In the following, a method to extract
similar features is introduced.

A. A Takens-inspired feature extraction technique

Our analysis begins by specifying the network’s state
space, which is defined by the set of random orthogonal
vectors in W . In order to identify possible attractor recon-
struction inside a rRNN’s state space, we analyze the injected
signal representation yin

n+1 via network’s node responses. As
input information yin

n+1 is being randomly injected into the
network’s high-dimensional space, we search for possible
spatial representations of the 1D input, where network nodes
serve as embedding dimensions.

With that goal in mind, we proceed with an analysis
comparable to the ACF used in delay embedding, based
on the estimation of the maximum absolute value of the
cross-correlation function |CC(xi, yin)|max between all node
responses {xi} and the input data yin. As our aim is to identify
nodes providing observations approximately orthogonal to
yin, we record for every network node such cross-correlation
maximum and the temporal position, or lag, of this maximum.
Figure 3(a) shows the cross-correlation analysis (CCA) for
μ = 1.1, where node correlation lags and maxima correspond
to the abscissa and ordinate, respectively. In this case, a
distribution of node lags, where an extension of the range to
{lmin, lmax} = {−49, 45}, is shown. Thus, the rRNN’s nodes
reveal a strong cross correlation at time lags covering all
Takens embedding delays {0, τ0, 2τ0, 3τ0}. Nodes lagged
around {−36,−24,−12, 0} should well approximate the Tak-
ens embedded attractor, and a state-space representation of the
input sequence is presented within the rRNNs’ space.

In Fig. 3(b), we illustrate some of the numerous pos-
sible extracted features from the originally injected at-
tractor embedded in the rRNN’s space for μ = 1.1. The
first column of the figure shows simple 2D projections of
the delay-reconstructed attractor by using the set of lags
{−24,−18,−12,−6}. The attractors reconstructed by net-
work nodes lagged at {−24,−18,−12,−6} are shown in
the three next columns, where each 2D projection was re-
constructed with network nodes enlisted in Table I. This set
of projections shows some random hidden feature represen-
tations of the input data in the rRNN’s high-dimensional
space. To build such projections, network nodes chosen from
Fig. 3(a) represent the ordinate, and the input data yin repre-
sent the abscissa. Attractors reconstructed by network nodes
with maximum cross-correlation values at lags {−18,−6} do
not belong to the set of original Takens delay coordinates. We
included these additional delay dimensions to better illustrate

-50 0 50

0.4

0.6

0.8

1

la
g=

-2
4

la
g=

-1
8

la
g=

-1
2

la
g=

-6

delay network

Ta
ke

ns
Ta

ke
ns

m
a
x
|C

C
(x

 ,

)|

i
y

IN

lag(x)i

(a)2 03lmin lmax

(b)

lag=0

 0 0 0

FIG. 3. (a) Maximum absolute value of the cross-correlation
function between node responses xi and input signal yin for μ = 1.1,
in which each of the 1000 reservoir nodes is considered with a red
dot. Labels {lmin, lmax} remark the lags’ limits for the distributions of
nodes, and τ0 = −12. (b) The first column shows the 2D projection
of different high-dimensional attractors of the MG system, using
diverse time lags. The following three columns show the embedding
found inside the rRNN’s space for μ = 1.1.

the breadth of features provided by the rRNN. Hence, all
extracted features can be qualitatively compared with input
delay-reconstructed 2D projections, shown in the first column
of Fig. 3(b). At this point, we wonder what is the relevance
of such identified features to the network’s prediction perfor-
mance. Then, in the next subsection we add a quantitative
comparison between those features and the original input
attractor.

Our analysis begins highlighting the fact that the CCA also
finds node lags and correlations that do not agree with the

TABLE I. Lags and network nodes list that build 2D projections
shown by Fig. 3(b) when plotted against yin.

Lag Network nodes

−6 13 91 302
−12 5 119 648
−18 396 771 848
−24 158 24 700

033030-4

TAKENS-INSPIRED NEUROMORPHIC PROCESSOR: A … PHYSICAL REVIEW RESEARCH 1, 033030 (2019)

-25 -20 -15 -10 -5 0
10-4

10-3

10-2

10-1

-25 -20 -15 -10 -5 0
0

1

2

3

-25 -20 -15 -10 -5 0
0

500

1000

1500

m
a
x
|C

C
(x

,

)|

i
y
 IN

lag(x)i

N
M

S
E

τ 0
net

-50 0 50
0.2

0.6

1.0

-50 0 50
0.2

0.6

1.0

-50 0 50
0.2

0.6

-50 0 50
0.2

0.6

1.0

1.0

(a)

(b)

(c)

(d)

(e)

(f)

(g)

vi
D

%
n
o
d
e
s

FIG. 4. Maximum absolute value of the cross-correlation function between node responses and input signal for μ = 1.1, considering the
rRNN network with (a) all nodes; and nodes lagged at 	(τ net

0) = {(M − 1)τ net
0 ± δτ net

0 }M , where M = 1, 2, 3, 4 and δτ net
0 = 3, for (b) τ net

0 = −7,
(c) τ net

0 = −12, and (d) τ net
0 = −17. (e) Measure of prediction error via average of NMSEs for 20-network model at μ = 1.1, over 20 MG

different time series. The red constant lines shows prediction performances for the networks including all nodes. The black curves show
prediction performances only considering nodes contained in 	(τ net

0). (f) Percentage of divergence showing the average of realizations for
which NMSE > 1, and (g) average of nodes contained in 	(τ net

0).

Takens framework. Non-Takens coordinates could negatively
impact network prediction performances. Therefore, we in-
troduce a methodology to exclude such additional delay di-
mensions from our predictor. As a starting point, we suppress
nodes with specific CCA-lag positions during the training
step of the output layer, such that they will not be available
to the readout matrix but still take part in the rRNN’s state
evolution. To that end, we select nodes for which their CCA-
lag positions are within windows of width δτ net

0 , centered at
integer multiples of τ net

0 , where τ net
0 represents the time lag

used for delay reconstructions in the Takens’ scheme. The
windows width δτ net

0 defines a time-lag uncertainty associated
to the identified rRNNs’ delay coordinates. All nodes with
CCA-lag positions not inside the set of (nτ net

0 ± δτ net
0), n ∈ Z,

will not be available to the readout layer.
To illustrate our method and its effect, we show the non-

filtered CCA of the rRNN when driven by the MG signal
and with bifurcation parameter μ = 1.1 in Fig. 4(a). Using a
constant CCA-windows width of δτ net

0 = 3, as the minimum
uncertainty found associated with good performances, we
now scan the position of these CCA windows by changing
τ net

0 . We restrict the number of windows to n ∈ {−M,−M +
1, . . . , M}. For τ net

0 ∈ {−17,−12,−7}, in Figs. 4(b)–4(d), we
show examples of filtered CCAs where just rRNN nodes
available for the readout layer are present.

Based on such movable CCA filters, we can estimate the
relevance of different CCA lags on the rRNN’s capacity to

predict a particular temporal sequence. We define 20 network
models via different initializations of {W,W in,W off}, and for
each model we obtain the NMSE for predicting the value of
20 different MG sequences at 300 time steps into the future.
In Fig. 4(e), we show the resulting NMSE, averaging over
all system combinations and for −25 � τ net

0 � −1. Here, the
average NMSE is given by the solid line, and the standard
deviation (stdev) interval by the dashed black lines. In Fig. 4(f)
we show the percentage of rRNN’s for which prediction
diverged from the target, i.e., NMSE > 1. Figure 4(g) shows
how many nodes are available to the network’s output layer.
The constant red curves present in all panels show averaged
performances obtained for the nonfiltered rRNN again with
the stdev interval given by the dashed red lines.

Restricting the system’s output based on the CCA-filter
windows has a strong and systematic impact onto the rRNN’s
prediction performance. Performance is optimized for very
characteristic filter positions, i.e., for τ net

0 ∈ [−16,−5]. For
τ net

0 ∈ [−12,−11] the embedding available to the network’s
output closely corresponds with the lags of the original Takens
attractor embedding. The performance achieved by setting
τ net

0 � τ0 in our approach slightly reduces the NMSE by
∼0.09, even though the system has in average significantly
less network nodes available to the output layer (∼500) [see
Fig. 4(g)]. For τ net

0 = −7, the performance is higher by one
order of magnitude, accessed by using approximately the
same initial set of nodes available to the output (∼1000)

033030-5

MARQUEZ, SUAREZ-VARGAS, AND SHASTRI PHYSICAL REVIEW RESEARCH 1, 033030 (2019)

[see Fig. 4(g)]. Thus, we are therefore able to identify node
families that show attractor embedding features in the net-
work’s space based on their CCA lag. For filters based on
τ net

0 ∈ [−16,−5] the prediction performances are either co-
incident or better than the nonfiltered CCA case. This result
is in agreement with Fig. 2, where we show that lags in such
interval seem to still unfold the object in the state space.

Finally, some further aspects are seen in our data. For
τ net

0 > −4, the CCA-filter windows overlap and nodes with
a lag inside such positions of overlap are assigned to multiple
windows. This artificially increases the number of nodes avail-
able to the system’s output beyond m = 1000. The resulting
NMSE strongly increases beyond the one for the original
rRNN. We attribute this characteristic to overfitting during
learning, where there are just repetitions of the same few delay
coordinates. In summary, it is noticeable that a link between
identified attractorlike features and prediction performance
can be established. In the following, a quantitative comparison
between those features and the original input attractor is
presented.

B. Characteristics of the extracted features

Our previous analysis identifies and harnesses meaningful
features related to good prediction performances. As this was
realized by randomly connected networks, attractor recon-
struction was achieved by randomly mapping the originally
1D input signal onto the high-dimensional rRNN’s space.
Such random mapping is treated by the framework of random
projections theory (RPT) [46–50]. An active area of study
within this field treats the question if original input data
are randomly mapped onto the dimensions of the projection
space, the structural damage to the original object is mini-
mized.

To determine the degree of potential structural distortions
to the original input attractor after random mapping onto the
network’s high-dimensional space according to yin

n → ϕ(yin
n),

we measure distances between consecutive states (interstate
distances) of the original ||yin

n+1 − yin
n || and the projected

||ϕ(yin
n+1) − ϕ(yin

n)|| objects. Following these steps, we take
inspiration from RPT extended to nonlinear mapping [51],
and develop a similar study which allows us to compare such
original and projected objects. Under such mapping, we find
that the interstate distances of the original attractor ‖yin

n+1 −
yin

n ‖ and of the projected attractors ‖ϕ(yin
n+1) − ϕ(yin

n)‖ in
the rRNN’s space are bound to the range [(1 − ε1), (1 + ε2)]
according to

(1 − ε1)
∥∥yin

n+1 − yin
n

∥∥ �
∥∥ϕ

(
yin

n+1

) − ϕ
(
yin

n

)∥∥
� (1 + ε2)

∥∥yin
n+1 − yin

n

∥∥, (5)

where {ϕ(yin
n), ϕ(yin

n+1)} are states built by rRNN node re-
sponses, where those node responses are assigned to an em-
bedding dimension using the CCA. Details in the estimation
of {ε1, ε2} are added in Appendix.

As τ net
0 = −12 was found to be associated to good predic-

tion performances using approximately half of the initial set of
nodes, we show in Fig. 5(a) the estimation of {ε1(μ), ε2(μ)}
for the rRNN for which nodes’ CCA-lag positions that
are within windows of width δτ net

0 = 3, centered at integer

multiples of τ net
0 = −12. Here, we present the average of the

statistical distribution that includes 20 network models and
the prediction of 20 different MG time series at 300 time
steps each into the future. In Fig. 5(b), we schematically
illustrate the relevant geometrical properties of the attrac-
tors mapped onto the rRNN’s space. Such study considered
τ0 = −12 with which we obtain the set of coordinates yn =
{yn, yn−12, yn−24, yn−36} that we use to unfold the state-space
object, where yin

n = yn.
The consequence of an increasing μ in Fig. 5(a) can be

explained with the graphic representation of the limits shown
by Fig. 5(b). Here, we illustrate the three general cases (I, II,
III) connected to their corresponding ranges in μ in Fig. 5(a).
The evolution of the original attractor’s trajectory is illustrated
along three black curves sampled at the positions of the big
black dots. Such curves represent random portions of the
attractor’s trajectory in a 2D space [yin

n , yin
n+τ0

], and the set
{yin

n , yin
n+1, yin

n+2} contains three attractor states from time step
n to n + 2. Gray dots are network’s neighbor states to the
yin

n+1, for instance. The first case (I) corresponds to neighbors
which form a dense cloud of samples, highlighted in brown
color, that are arranged closely around the original sample
since ε1 � 1 and ε2 < 1. The neighbor samples insufficiently
enhance diversity in feature extraction and the network cannot
predict the system’s future evolution. This is confirmed by
Figs. 5(c) and 5(d), which show bad prediction performance
and unity divergence: the rRNN cannot predict the system.

Case (II) includes the values of μ where ε1 � 1 and
ε2 � 1. Within this parameter range, the system’s prediction
performance strongly increases until reaching the lowest pre-
diction error. Our analysis reveals the following mechanism
behind this improvement: according to ε2, the maximum in-
terstate distance possible inside the rRNN’s space is twice the
interstate distance of the original trajectory. As a consequence,
the rRNN samples neighbors to state yin

n+1. Hence, as the state
neighborhood is broader, there now is a sufficient random
scanning of the attractor’s vicinity, such that the network can
use the different features to solve prediction. The network
can therefore use the projected objects to predict, which
is confirmed by good performance according to Figs. 5(c)
and 5(d).

The last case (III) appears for μ > 1.3, where all ap-
proximated distances of the embedded attractor are much
larger than the original distance. The rRNN’s autonomous
dynamics therefore enlarge the sampling distance such that
no dense nearest neighbors are anymore available for predic-
tion. The result is the distortion caused by the autonomous
network’s dynamics typically found to be chaotic for μ � 1.4,
already identified in our previous work [9]. Consequently,
the network’s folding property distorts the projected features.
Therefore, ε1 becomes undefined, meaning that informa-
tion about the structure of the embedded trajectory is lost.
As a consequence, prediction performance strongly reduces
[see Figs. 5(c) and 5(d)].

The process described in this section allowed us to identify
and use relevant features that benefit good long-term pre-
diction performances with a downsized rRNN. Additionally,
we found that the neighborhood generated by the interstate
distances of such features has an meaningful impact on the
network’s ability to predict at all. At this point, we show how

033030-6

TAKENS-INSPIRED NEUROMORPHIC PROCESSOR: A … PHYSICAL REVIEW RESEARCH 1, 033030 (2019)

FIG. 5. (a) Maximum and minimum average boundaries {ε1, ε2} as function of μ, where τ net
0 = −12 and δτ net

0 = 3. (b) Illustrative scheme
showing the evolution of {ε1, ε2} for three different cases connected to their corresponding ranges in μ. (c) Measure of prediction error
via average of NMSEs for 20-network model, over 20 MG different time series; and (d) percentage of divergence showing the average of
realizations for which NMSE > 1 as functions of μ.

to simplify even more our process and package all the above-
described steps that allowed us to utilize features related to
good prediction performances.

IV. HYBRID TAKENS-INSPIRED RANDOM
RECURRENT NETWORKS

In this section, we directly exploit our newly gained insight
and introduce a modified version of the classical random
neural network for time-series prediction. Here, we design
a system which aims to only take into account such Takens
dimensions that we found to be relevant for prediction. As it
was previously described, actions provided by the nodes of
the rRNN can be interpreted in the light of delay embedding.
We consequently modify the classical rRNN by including a
Takens-inspired external memory:

xn+1 = fNL
(
μW · xn + αW in · yin

n+1 + W off · b
)
, (6)

yout
n+1 = W out · (xn+1, xn+1+τT), (7)

where xn+1+τT is a delayed term added to the output layer
[see Fig. 6(a)]. All elements of the reservoir layer have been
copied and then time shifted by a delay term τT that could
be the Takens embedding delay τ0. This process allows us
to add virtual nodes to our network, which are distributed
in the delay lines. This Takens rRNN (TrRNN) combines

nonvolatile external memory (virtual nodes) with a neural
network (real nodes) and therefore shares functional features
of the recently introduced hybrid computing concept [52].
Yet, our concept makes any additional costly optimization
unnecessary.

We start our analysis by identifying the embedding delay
related to the best prediction performance. Here, we fix μ =
0.1, and modify then the delay term τT ∈ [−20,−1]. For
μ = 0.1, the delay coordinates found in the network’s space
only span approximately two Takens embedding dimensions
of the MG system with delays {2τ0, 0}, when τ0 = −12 [see
Fig. 6(b)]. Furthermore, most node responses are distributed
along the columns centered in lags {2τ0, 0}. Consequently, as
shown in Figs. 5(c) and 5(d), the prediction performance is
almost the lowest possible due to insufficient dimensionality
to get attractorlike features. Additionally, we set the number
of nodes to 350, which is 70% of the nodes that the best CCA-
windows filtered rRNN had to disposal (see Sec. III A); and it
uses 35% of the nodes used by the nonfiltered classical rRNN.

According to Figs. 7(a) and 7(b), the best averaged pre-
diction performance, for 20 network models over 20 MG
different time series at 300 time steps into the future, is found
for τT = −12, belonging to an interval τT ∈ [−13,−10] with
the lowest NMSE values and divergent rates. The delay τT

therefore agrees with the one identified for Takens attractor
embedding τ0 and is almost identical to one of the lags τ net

0

033030-7

MARQUEZ, SUAREZ-VARGAS, AND SHASTRI PHYSICAL REVIEW RESEARCH 1, 033030 (2019)

w
w
w

x
x
x

1,1

1,2

1,m

1

2

m

n

n

n

... ...

w
w
w

2,1

2,2

2,m

...

w
w
w

m,1

m,2

m,m

...

w

w

w
w

w

w

1

1

2

2

m

m

o

o

o

IN

b

b

b

input
layer

internal feedback

x
x
x

1

2

m

n

n

n

...

x
x
x

1

2

m

n

n

n

...

x

x

x

1

2

m

n+1

n+1

n+1

node
responses

yIN

input
sequence

yIN

yIN

yIN

reservoir
layer

IN

IN

WOUT

yOUT

x

x

x

1

2

m

n+1-τ

n+1-τ

n+1-τ0

0

0

τT

τT

τT

-50 0

0.4

0.6

0.8

1

50

(b)

m
a
x
|C

C
(x

 ,

)|

i
y

IN

lag(x)i

2 03 0

min max

(a)

0 0

FIG. 6. (a) Schematic illustration of a TrRNN. Information en-
ters the system via the input, a recurrently connected network forms
a neural network. Based on our theory, we propose a simplistic
extension to the system via an external delay memory τT . (b) Max-
imum absolute value of the cross-correlation function between node
responses xi and input signal yin for μ = 0.1, in which each of the
1000 reservoir nodes is considered with a red dot. Labels {lmin, lmax}
remark the lags’ limits for the distributions of nodes, and τ0 = −12.

found optimal in the CCA-window filtering. Furthermore,
here the system only has as many CCA windows at its disposal
as dimensions required to embed the MG attractor. This re-
moves the disambiguity present in the CCA-window filtering
analysis, where a time-lag uncertainty was required to exclude
possible scattered delay coordinates. Consequently, the op-
timum performance is found only for a TrRNN embedding
exactly along lags according to Takens embedding. In com-
parison to the classical rRNN, our TrRNN achieves the same
performance, simultaneously reducing the amount of nodes in
the network layer from 1000 to 350 in the output layer. Com-
pared to the pristine rRNN, we obtain one order of magnitude
better performance with a network three times smaller.

Figure 7(c) shows the estimation of {ε1, ε2} with the vari-
ation of τT . As it can be seen, ε2 � 1 is associated to good
prediction performances, found for τT ∈ [−13,−10]. This
result agrees with the results provided by the classical random
network in Sec. III B. The CCA for τT = −12 is shown by
Fig. 7(d), where we can find the set of nodes with all delay
coordinates required to fully reconstruct the MG attractor.
In the cases where prediction was not possible, the CCA
identifies the nonadequacy of the rRNN delay embedding as
the reason [see Fig. 7(e) for τT = −3].

A. Application: Control an arrhythmic neuronal model

We directly utilize our TrRNN as a part of an efficient feed-
back control mechanism in an arrhythmic excitable system.
We task the TrRNN to aid stabilizing a system which models

(a)

1
2

,

10-1

100

0.2

0.4

0.6

0.8

1

-40 -20 0 20
0.2

0.4

0.6

0.8

1

m
a
x
|C

C
(x

 ,

)
|

i
yIN

m
a
x
|C

C
(x

 ,

)
|

i
yIN

lag(x)i

N
M

S
E

%
D

iv

10-4

10-3

10-2

10-1

100

0

50

100
(b)

T

-20 -15 -10 -5 0

(c)

(d)

(e)

1

2

FIG. 7. (a) Average of prediction performances NMSEs for 20-
network model, over 20 MG different time series using a TrRNN
with 350 nodes at μ = 0.1 and the delay term τT ∈ [−20, 0]. (b) Per-
centage of divergence showing the average of realizations for which
NMSE > 1. (c) Maximum and minimum average boundaries {ε1, ε2}
as function of τT . Maximum absolute value of the cross-correlation
function between node responses and input signal for (d) τT = −12
and (e) τT = −3.

the firing behavior of a noise-driven neuron. It consists in the
FitzHugh-Nagumo (FHN) neuronal model [53,54]

ε
dv(t)

dt
= v(t)[v(t) − g][1 − v(t)] − w + I + ξ (t), (8)

dw(t)

dt
= v(t) − Dw(t) − H, (9)

where v(t) and w(t) are voltage and recovery variables. I =
0.3 is an activation signal, ξ is Gaussian white noise with
zero mean and standard deviation ∼0.02, ε = 0.005, g = 0.5,
D = 1.0, and H = 0.15. These equations have been solved
by the Euler-Maruyama algorithm for stochastic differen-
tial equation’s integration. In its resting state, the neuron’s
membrane potential is slightly negative. Once the membrane
voltage v(t) is sufficiently depolarized through an external
stimuli, the neuron spikes due to the rise of the action potential
[55,56]. The time between consecutive spikes is defined as
interspike intervals (ISIs). In Fig. 8(a), random ISI’s evolution
is shown from step 0 to 7464, where such trajectory exhibits
the nonregular neural spiking of the FHN neuronal model.

We aim to control this random spiking behavior of the FHN
neuronal model by proportional perturbation feedback (PPF)
method [57] and by using either a TrRNN or a rRNN. The
PPF method consists in the application of perturbations to
locate the system’s unstable fixed point onto a stable trajectory
[57,58]. This method is used to fit instabilities in the FHN
neuronal model through the design of a control equation. In
our case, the goal of using the PPF method is to build a control
subsystem, which applies an external stimuli to trigger spiking
and reduce the degree of chaos. Once the control is activated,

033030-8

TAKENS-INSPIRED NEUROMORPHIC PROCESSOR: A … PHYSICAL REVIEW RESEARCH 1, 033030 (2019)

0 5000 10000
0.7

0.8

0.9

1

1.1

1.2

1.3

0 100 200 300
0.5

1

1.5

2

2.5
IS

I IS
I

steps nodes

(a) (b)

FIG. 8. (a) Interspike intervals (ISIs) of an arrhythmic excitable system comparable to a heart. Stabilization of the system based on TrRNN
with only 12 network nodes. (b) Comparison between the stabilized mean of the TrRNN (black curve with stars) and a classical rRNN (blue
curve with dots).

the resulting control signal is injected via I through a train of
pulses which take discrete values.

In our approach, the past information provided by voltage
v(t) in the FHN model is used to determine two things: (i)
the parameters to design the control equation, and (ii) training
parameters for rRNN (μ = 1.1) and TrRNN [μ = 0.1, and
τT = −166 obtained via the ACF minimum of v(t) as in
the Takens’ scheme] to predict future values of v(t). The
predicted v(t) is used to calculate the full control signal
with which we stabilize the neuron’s spiking activity. Such
stabilization will cause the cease of random ISIs and then the
beginning of regular spiking, where each recorded ISI should
follow a constant evolution. Our methodology allows us to
replace the quantity under control v(t) by a predicted signal
generated by either a rRNN or a TrRNN. This replacement
is a typical practice in control theory as it is related with the
replacement of sensors in an exemplary control system.

To train the network, we inject 1×105 values and we let
the network run freely for other 4×106 steps, allowing us to
stabilize 5619 ISI points. We then evaluate the quality of the
stabilization for networks ranging from 11 to 340 nodes. In
Fig. 8(a), we show how random ISIs are evolving from step 0
to 7464. Then, once the control is activated at step 7465, the
set of blue dots along a constant line shows how the TrRNN’s
output, by means of the control equation, can stabilize the ISI
activity. As it can be seen, the network can control the random
ISI starting from step 7465. The excellent stabilization was
achieved with a TrRNN containing only 12 nodes.

Figure 8(b) shows the full comparison between rRNN and
TrRNN. The mean value of ISI is calculated for the different
sizes of rRNN and TrRNN and then normalized by the mean
value of the random ISI. The TrRNN starts inferring the inner
dynamics of the FHN system for an extremely small network
containing just 12 nodes, from which point on it is always
capable to correctly stabilize the ISI. In contrast, the classical
rRNN does not predict at all until its architecture has at
least 80 nodes, but performance remains poor in comparison
with TrRNN. For 200 nodes the rRNN starts predicting the
dynamic of the FHN system more or less correctly, allowing

the control signal to fully stabilize the ISI. Yet, for more
than 200 nodes the good performance still can fluctuate, even
significantly dropping again. This indicates that in general the
stabilization via a classical rRNN is not robust. Furthermore,
with the TrRNN one can reduce the number of nodes to 15
times less than the classical rRNN. This stark difference in
performance highlights (i) the difficulty of the task, and (ii)
the excellent efficiency that the addition of a simple, linear
delay term adjusted to the Takens embedding delay brings to
the system. Our TrRNN, therefore, is not only an interesting
ANN concept for the prediction of complex systems, it also
helps with the downsize of random recurrent networks’ hidden
layers while preserving good prediction performances.

V. COMPARISON WITH CLASSICAL
STATE-SPACE PREDICTION

Up to now, we have been describing a method for downsiz-
ing the hidden layer of rRNNs which can be summarized by
the same steps that should be followed if we attempt to solve
continuous-time chaotic signal prediction in the state-space
framework. This framework can be divided according to three
fundamental aspects [22,25,26]: (i) insufficient information to
represent the complete state-space trajectory of the chaotic
system: this problem originates from the fact that in many
cases one does not have access to all state-space dimensions.
In this case, a reconstruction of the dynamics along the chaotic
system’s missing degrees of freedom is required. The knowl-
edge of all dimensions allows us to design predictors based on
full state-space trajectories. (ii) The second problem is related
to the sampling resolution: all information that is acquired,
be it from simulations or from experiments, comes with a
particular resolution. To minimize the divergence between a
prediction and the correct value, the sampling resolution has to
be maximized. This is of particular importance for prediction
of chaotic systems as these by definition show exponential
divergence. (iii) For deterministic chaotic systems, future
states of a given trajectory can in principle be approximated
from the exact knowledge of the present state. Therefore, the

033030-9

MARQUEZ, SUAREZ-VARGAS, AND SHASTRI PHYSICAL REVIEW RESEARCH 1, 033030 (2019)

final step toward prediction is approximating the underlying
deterministic law ruling the dynamical system’s evolution.

By the same token, step (i) is fulfilled by the random
mapping which takes place in the high-dimensional space
of the network. Here, RPT supports the fact that the orig-
inal input data are randomly mapped onto the dimensions
of the projection space, and then the structural damage to
the original object is minimized. Step (ii) is fulfilled by the
analysis made in Sec. III B, where the sampling resolution is
maximized to cover the region between the states yin

n and yin
n+1.

Finally, step (iii) relates to the training itself of the rRNN,
where W out has to be determined via regression.

VI. CONCLUSION

We have introduced a unconventional method of rRNNs
analysis which demonstrates how prediction is potentially
achieved in high-dimensional nonlinear dynamical systems.
Random recurrent networks and prediction of a specific signal
can consequently be described via a common methodology.
Quantifying measures such as the memory related cross-
correlation analysis and the feature extraction are quanti-
tatively interpretable. We therefore significantly extend the
toolkit previously available for random neural network analy-
sis. Tools developed in the paper might be comparable to the
utilization of the t-SNE [59] technique for analyzing ANNs
during a classification task.

Our scheme has numerous practical implications. The most
direct is motivating the development and analysis of new
learning strategies. Furthermore, we already designed a hybrid
processor which includes both virtual and real nodes that ef-
ficiently predicts via a priori defined external memory access
rules. This approach allows us to improve the design of our
neural network in order to reduce the number of nodes and
connections required to solve prediction.

ACKNOWLEDGMENT

Funding for B.A.M. and B.J.S. was provided by the 2019
Queen’s postdoctoral fellowship fund, the Natural Sciences
and Engineering Research Council of Canada (NSERC) Dis-
covery Grant and the Queen’s Research Initiation Grant
(RIG).

APPENDIX: ESTIMATION OF {ε1, ε2}
Each state in Takens space is described by M delay coordi-

nates

yin
n = (

yin
n , yin

n+τ0
, . . . , yin

n+(M−1)τ0

)
, (A1)

yin
n+1 = (

yin
n+1, yin

(n+1)+τ0
, . . . , yin

(n+1)+(M−1)τ0

)
. (A2)

The second step is to define the corresponding two arbitrary
consecutive states {ϕ(yin

n), ϕ(yin
n+1)} ∈ Rh, where h depends

on μ. The value of h is determined from the CCA, where we
approximately assign the mapped objects dimensionality to
the number of elements found in the interval [lmin, lmax] for

each μ [see Figs. 2(b) and 2(c)]. In order to construct those
projected states, we use all the delay coordinates provided by
the network, i.e., the full range [lmin, lmax] for each value of μ,
as follows:

ϕ
(
yin

n

) = [
ϕl1

(
yin

n

)
, ϕl2

(
yin

n

)
, . . . , ϕlh

(
yin

n

)]
, (A3)

ϕ
(
yin

n+1

) = [
ϕl1

(
yin

n+1

)
, ϕl2

(
yin

n+1

)
, . . . , ϕlh

(
yin

n+1

)]
, (A4)

where {ϕl1 (yin
n), ϕl2 (yin

n), . . .} are node responses lagged at
[lmin, lmax]. The size of the interval [lmin, lmax] depends on the
value of μ, as it was shown by Figs. 2(b) and 2(c), where
we find a broader distribution of delay coordinates for higher
values of μ.

The interstate distances ‖yin
n+1 − yin

n ‖ and ‖ϕ(yin
n+1) −

ϕ(yin
n)‖ have to be bounded in the interval [(1 − ε1), (1 + ε2)]

according to∥∥ϕ
(
yin

n+1

) − ϕ
(
yin

n

)∥∥∥∥yin
n+1 − yin

n

∥∥ ∈ [(1 − ε1), (1 + ε2)]. (A5)

Under these conditions, we can claim that the transformation
by the rRNN agrees with a nonlinear random projections.
Estimating limits {ε1, ε2} requires to find the inferior εmin, and
superior εmax interstate distance limits:∥∥ϕ

(
yin

n+1

) − ϕ
(
yin

n

)∥∥
min∥∥yin

n+1 − yin
n

∥∥ = εmin; (A6)

∥∥ϕ
(
yin

n+1

) − ϕ
(
yin

n

)‖max∥∥yin
n+1 − yin

n

∥∥ = εmax, (A7)

where ε1 and ε2 are calculated by isolating these constants
from εmin = (1 − ε1) and εmax = (1 + ε2). These limits con-
tain information about the minimum and maximum distor-
tions that we can find in order to get the best neighbors in the
rRNN. ‖ϕ(yin

n+1) − ϕ(yin
n)‖min and ‖ϕ(yin

n+1) − ϕ(yin
n)‖max are

calculated by using Euclidean distance under minimum and
maximum norms∥∥ϕ

(
yin

n+1

) − ϕ
(
yin

n

)∥∥
min

=
⎛
⎝ lmax∑

lg=lmin

[
ϕlg

(
yin

n+1

) − ϕlg

(
yin

n

)]2
min

⎞
⎠

1/2

, (A8)

∥∥ϕ
(
yin

n+1

) − ϕ
(
yin

n

)‖max

=
⎛
⎝ lmax∑

lg=lmin

[
ϕlg

(
yin

n+1

) − ϕlg

(
yin

n

)]2
max

⎞
⎠

1/2

, (A9)

where ϕlg (yin
n) are node responses lagged at lg ∈ [lmin, lmax],

∀ g = 1, 2, . . . , h.
Here, we therefore identify the smallest and largest dis-

tances [ϕlg (yin
n+1) − ϕlg (yin

n)]min,max along each delay coordi-
nate. Then, it is true that these smallest and largest distances
bound the Euclidean distance of these. Finally, we determine
‖yin

n+1 − yin
n ‖ via

∥∥yin
n+1 − yin

n

∥∥ =
√(

yin
n+1 − yin

n

)2 + · · · + (
yin

(n+1)+(M−1)τ0
− yin

n+(M−1)τ0

)2
. (A10)

033030-10

TAKENS-INSPIRED NEUROMORPHIC PROCESSOR: A … PHYSICAL REVIEW RESEARCH 1, 033030 (2019)

[1] W. Maass, Searching for principles of brain computation,
Curr. Opin. Behav. Sci. 11, 81 (2016).

[2] H. Jaeger and H. Haas, Harnessing nonlinearity: Predicting
chaotic systems and saving energy in wireless communication,
Science 304, 78 (2004).

[3] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke,
and J. Schmidhuber, A novel connectionist system for uncon-
strained handwriting recognition, IEEE Trans. Pattern Anal.
Mach. Intell. 31, 855 (2009).

[4] A. Graves, A. R. Mohamed, and G. Hinton, Speech recognition
with deep recurrent neural networks, in Proceedings of the 2013
IEEE International Conference on Acoustics, Speech and Signal
Processing (IEEE, Piscataway, NJ, 2013), p. 6645.

[5] H. Sak, A. Senior, and F. Beaufays, Long short-term memory
recurrent neural network architectures for large scale acoustic
modeling, in Proceedings of the 14th Annual Conference of the
International Speech Communication Association, Interspeech
2013 (ICSA, Baixas, France, 2014), p. 6645.

[6] X. Li and X. Wu, Constructing long short-term memory based
deep recurrent neural networks for large vocabulary speech
recognition, in Proceedings of the 2015 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP)
(IEEE, Piscataway, NJ, 2015), p. 4520.

[7] C. G. Langton, Computation at the edge of chaos: Phase transi-
tions and emergent computation, Phys. D (Amsterdam) 42, 12
(1990).

[8] T. Natschlager, N. Bertschinger, and R. Legenstein, At the edge
of chaos: Realtime computations and self-organized criticality
in recurrent neural networks, in Advances in Neural Information
Processing Systems (NIPS, San Diego, 2005).

[9] B. A. Marquez, L. Larger, M. Jacquot, Y. K. Chembo, and D.
Brunner, Dynamical complexity and computation in recurrent
neural networks beyond their fixed point, Sci. Rep. 8, 3319
(2018).

[10] A. M. Bruckstein, D. L. Donoho, and M. Elad, From sparse
solutions of systems of equations to sparse modeling of signals
and images, SIAM Rev. 51, 34 (2009).

[11] S. Ganguli and H. Sompolinsky, Compressed sensing, sparsity,
and dimensionality in neuronal information processing and data
analysis, Annu. Rev. Neurosci. 35, 485 (2012).

[12] B. Babadi and H. Sompolinsky, Sparseness and expansion in
sensory representations, Neuron 83, 1213 (2014).

[13] M. Schottdorf, W. Keil, D. Coppola, L. E. White, and F. Wolf,
Random wiring, ganglion cell mosaics, and the functional archi-
tecture of the visual cortex, PLoS Comput. Biol. 11, e1004602
(2015).

[14] W. Maass, T. Natschlaeger, and H. Markram, Real-time com-
puting without stable states: A new framework for neural
computation based on perturbations, Neural Comput. 14, 2531
(2002).

[15] P. Antonik, M. Haelterman, and S. Massar, Brain-Inspired
Photonic Signal Processor for Generating Periodic Patterns and
Emulating Chaotic Systems, Phys. Rev. Appl. 7, 054014 (2017).

[16] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20,
130 (1963).

[17] M. C. Mackey and L. Glass, Oscillation and chaos in physio-
logical control systems, Science 197, 287 (1977).

[18] E. Ott, Chaos in Dynamical Systems (Cambridge University
Press, Cambridge, 1993).

[19] R. FitzHugh, Mathematical models of threshold phenomena in
the nerve membrane, Bull. Math. Biophys. 17, 257 (1955).

[20] R. FitzHugh, Impulses and physiological states in theoretical
models of nerve membrane, Biophys. J. 1, 445 (1961).

[21] J. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse
transmission line simulating nerve axon, Proc. IRE 50, 2061
(1962).

[22] A. S. Weigend and N. A. Gershenfeld, Time Series Prediction:
Forecasting the Future and Understanding the Past (Westview
Press, Boulder, CO, 1993).

[23] M. Zarandi, M. Zarinbal, N. Ghanbari, and I. Turksen, A new
fuzzy functions model tuned by hybridizing imperialist com-
petitive algorithm and simulated annealing. application: Stock
price prediction, Inf. Sci. 222, 213 (2013).

[24] A. Celikyilmaz and I. B. Turksen, Fuzzy functions with support
vector machines, Inf. Sci. 177, 5163 (2007).

[25] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis
(Cambridge University Press, Cambridge, 1997).

[26] J. D. Farmer and J. J. Sidorowich, Predicting Chaotic Time
Series, Phys. Rev. Lett. 59, 845 (1987).

[27] A. K. Alparslan, M. Sayar, and A. R. Atilgan, State-space
prediction model for chaotic time series, Phys. Rev. E 58, 2640
(1998).

[28] D. Kugiumtzis, O. C. Lingjærde, and N. Christophersen, Reg-
ularized local linear prediction of chaotic time series, Phys. D
(Amsterdam) 112, 344 (1998).

[29] E. Ott, C. Grebogi, and J. A. Yorke, Controlling Chaos, Phys.
Rev. Lett. 64, 1196 (1990).

[30] R. Rojas, Neural Networks: A Systematic Introduction
(Springer, Berlin, 1996).

[31] K. Gurney, An Introduction to Neural Networks (CRC Press,
Boca Raton, FL, 1997).

[32] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature
(London) 521, 436 (2015).

[33] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based
learning applied to document recognition, Proc. IEEE 86, 2278
(1998).

[34] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning
(The MIT Press, Cambridge, MA, 2016).

[35] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert,
S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I.
Fischer, Information processing using a single dynamical node
as complex system, Nat. Commun. 2, 468 (2011).

[36] B. A. Marquez, Complex signal embedding and photonic reser-
voir Computing in time series prediction. Neural and Evolution-
ary Computing [cs.NE]. Université Bourgogne Franche-Comté,
2018. English. NNT: 2018UBFCD042.

[37] B. A. Marquez, J. Suarez-Vargas, L. Larger, M. Jacquot, Y. K.
Chembo, and D. Brunner, Embedding in neural networks: A-
priori design of hybrid computers for prediction, in Proceedings
of the IEEE International Conference on Rebooting Comput-
ing (ICRC), Washington, DC (IEEE, Piscataway, NJ, 2017),
pp. 1–4.

[38] H. Jaeger, The echo state approach to analyzing and training
recurrent neural networks, Fraunhofer Institute for Autonomous
Intelligent Systems, Technical Report No. 148, 2001.

[39] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, Deep-
face: Closing the gap to human-level performance in face
verification, in Proceedings of the Conference on Computer

033030-11

https://doi.org/10.1016/j.cobeha.2016.06.003
https://doi.org/10.1016/j.cobeha.2016.06.003
https://doi.org/10.1016/j.cobeha.2016.06.003
https://doi.org/10.1016/j.cobeha.2016.06.003
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1109/TPAMI.2008.137
https://doi.org/10.1109/TPAMI.2008.137
https://doi.org/10.1109/TPAMI.2008.137
https://doi.org/10.1109/TPAMI.2008.137
https://doi.org/10.1016/0167-2789(90)90064-V
https://doi.org/10.1016/0167-2789(90)90064-V
https://doi.org/10.1016/0167-2789(90)90064-V
https://doi.org/10.1016/0167-2789(90)90064-V
https://doi.org/10.1038/s41598-018-21624-2
https://doi.org/10.1038/s41598-018-21624-2
https://doi.org/10.1038/s41598-018-21624-2
https://doi.org/10.1038/s41598-018-21624-2
https://doi.org/10.1137/060657704
https://doi.org/10.1137/060657704
https://doi.org/10.1137/060657704
https://doi.org/10.1137/060657704
https://doi.org/10.1146/annurev-neuro-062111-150410
https://doi.org/10.1146/annurev-neuro-062111-150410
https://doi.org/10.1146/annurev-neuro-062111-150410
https://doi.org/10.1146/annurev-neuro-062111-150410
https://doi.org/10.1016/j.neuron.2014.07.035
https://doi.org/10.1016/j.neuron.2014.07.035
https://doi.org/10.1016/j.neuron.2014.07.035
https://doi.org/10.1016/j.neuron.2014.07.035
https://doi.org/10.1371/journal.pcbi.1004602
https://doi.org/10.1371/journal.pcbi.1004602
https://doi.org/10.1371/journal.pcbi.1004602
https://doi.org/10.1371/journal.pcbi.1004602
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1103/PhysRevApplied.7.054014
https://doi.org/10.1103/PhysRevApplied.7.054014
https://doi.org/10.1103/PhysRevApplied.7.054014
https://doi.org/10.1103/PhysRevApplied.7.054014
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1126/science.267326
https://doi.org/10.1126/science.267326
https://doi.org/10.1126/science.267326
https://doi.org/10.1126/science.267326
https://doi.org/10.1007/BF02477753
https://doi.org/10.1007/BF02477753
https://doi.org/10.1007/BF02477753
https://doi.org/10.1007/BF02477753
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1016/j.ins.2012.08.002
https://doi.org/10.1016/j.ins.2012.08.002
https://doi.org/10.1016/j.ins.2012.08.002
https://doi.org/10.1016/j.ins.2012.08.002
https://doi.org/10.1016/j.ins.2007.06.022
https://doi.org/10.1016/j.ins.2007.06.022
https://doi.org/10.1016/j.ins.2007.06.022
https://doi.org/10.1016/j.ins.2007.06.022
https://doi.org/10.1103/PhysRevLett.59.845
https://doi.org/10.1103/PhysRevLett.59.845
https://doi.org/10.1103/PhysRevLett.59.845
https://doi.org/10.1103/PhysRevLett.59.845
https://doi.org/10.1103/PhysRevE.58.2640
https://doi.org/10.1103/PhysRevE.58.2640
https://doi.org/10.1103/PhysRevE.58.2640
https://doi.org/10.1103/PhysRevE.58.2640
https://doi.org/10.1016/S0167-2789(97)00171-1
https://doi.org/10.1016/S0167-2789(97)00171-1
https://doi.org/10.1016/S0167-2789(97)00171-1
https://doi.org/10.1016/S0167-2789(97)00171-1
https://doi.org/10.1103/PhysRevLett.64.1196
https://doi.org/10.1103/PhysRevLett.64.1196
https://doi.org/10.1103/PhysRevLett.64.1196
https://doi.org/10.1103/PhysRevLett.64.1196
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/ncomms1476
https://doi.org/10.1038/ncomms1476
https://doi.org/10.1038/ncomms1476
https://doi.org/10.1038/ncomms1476

MARQUEZ, SUAREZ-VARGAS, AND SHASTRI PHYSICAL REVIEW RESEARCH 1, 033030 (2019)

Vision and Pattern Recognition (IEEE, Piscataway, NJ, 2014),
p. 1701.

[40] G. V. Demidenko, V. A. Likhoshvai, and A. V. Mudrov, On
the relationship between solutions of delay differential equa-
tions and infinite-dimensional systems of differential equations,
Diff. Equ. 45, 33 (2009).

[41] H. Whitney, Differentiable manifolds, Ann. Math. 37, 645
(1936).

[42] F. Takens, Detecting strange attractors in turbulence, Dynam-
ical Systems and Turbulence, Lecture Notes in Mathematics
(Springer, Berlin, 1981).

[43] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization
(Cambridge University Press, Cambridge, 2001).

[44] J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and
strange attractors, Rev. Mod. Phys. 57, 617 (1985).

[45] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw,
Geometry from a Time Series, Phys. Rev. Lett. 45, 712 (1980).

[46] W. B. Johnson and J. Lindenstrauss, Conference in Modern
Analysis and Probability (Contemporary Mathematics) (Amer-
ican Mathematical Society, Providence, RI, 1984).

[47] P. Indyk and R. Motwani, Approximate Nearest Neighbors:
Towards Removing the Curse of Dimensionality (ACM Press,
New York, 1998).

[48] P. Frankl and H. Maehara, The johnson-lindenstrauss lemma
and the sphericity of some graphs, J. Combin. Theory B 44,
355 (1988).

[49] S. Dasgupta and A. Gupta, An elementary proof of a theorem of
Johnson and Lindenstrauss, Random Struct. Alg. 22, 60 (2002).

[50] D. Sivakumar, Algorithmic derandomization using complexity
theory, in Proceedings of the 34th Annual ACM Symposium

on Theory of Computing, Canada (ACM Press, New York,
2002).

[51] J. B. Tenenbaum, V. de Silva, and J. C. Langford, A global
geometric framework for nonlinear dimensionality reduction,
Science 290, 2319 (2000).

[52] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka,
A. Grabska-Barwinska, S. Colmenarejo, E. Grefenstette, T.
Ramalho, J. Agapiou, A. Badia, K. Hermann, Y. Zwols,
G. Ostrovski, A. Cain, H. King, C. Summerfield, P. Blunsom, K.
Kavukcuoglu, and D. Hassabis, Hybrid computing using a neu-
ral network with dynamic external memory, Nature (London)
538, 471 (2016).

[53] A. Longtin, Stochastic resonance in neuron models, J. Stat.
Phys. 70, 309 (1993).

[54] D. J. Christini and J. J. Collins, Controlling Nonchaotic Neu-
ronal Noise using Chaos Control Techniques, Phys. Rev. Lett.
75, 2782 (1995).

[55] R. M. Enoka, Neuromechanics of Human Movement (Human
Kinetics, Champaign, IL, 2015).

[56] B. Tirozzi, D. Bianchi, and E. Ferraro, Introduction to Com-
putational Neurobiology and Clustering (World Scientific,
Singapore, 2007).

[57] A. Garfinkel, M. L. Spano, W. L. Ditto, and J. N. Weiss,
Controlling cardiac chaos, Science 257, 1230 (1992).

[58] S J. Schiff, K. Jerger, D H. Duong, T. Chang, M. L. Spano, and
W. L. Ditto, Controlling chaos in the brain, Nature (London)
370, 615 (1994).

[59] L. J. P. van der Maaten and G. E. Hinton, Visualizing high-
dimensional data using t-sne, J. Mach. Learn. Res. 9, 2579
(2008).

033030-12

https://doi.org/10.1134/S0012266109010042
https://doi.org/10.1134/S0012266109010042
https://doi.org/10.1134/S0012266109010042
https://doi.org/10.1134/S0012266109010042
https://doi.org/10.2307/1968482
https://doi.org/10.2307/1968482
https://doi.org/10.2307/1968482
https://doi.org/10.2307/1968482
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1103/PhysRevLett.45.712
https://doi.org/10.1103/PhysRevLett.45.712
https://doi.org/10.1103/PhysRevLett.45.712
https://doi.org/10.1103/PhysRevLett.45.712
https://doi.org/10.1016/0095-8956(88)90043-3
https://doi.org/10.1016/0095-8956(88)90043-3
https://doi.org/10.1016/0095-8956(88)90043-3
https://doi.org/10.1016/0095-8956(88)90043-3
https://doi.org/10.1002/rsa.10073
https://doi.org/10.1002/rsa.10073
https://doi.org/10.1002/rsa.10073
https://doi.org/10.1002/rsa.10073
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1038/nature20101
https://doi.org/10.1038/nature20101
https://doi.org/10.1038/nature20101
https://doi.org/10.1038/nature20101
https://doi.org/10.1007/BF01053970
https://doi.org/10.1007/BF01053970
https://doi.org/10.1007/BF01053970
https://doi.org/10.1007/BF01053970
https://doi.org/10.1103/PhysRevLett.75.2782
https://doi.org/10.1103/PhysRevLett.75.2782
https://doi.org/10.1103/PhysRevLett.75.2782
https://doi.org/10.1103/PhysRevLett.75.2782
https://doi.org/10.1126/science.1519060
https://doi.org/10.1126/science.1519060
https://doi.org/10.1126/science.1519060
https://doi.org/10.1126/science.1519060
https://doi.org/10.1038/370615a0
https://doi.org/10.1038/370615a0
https://doi.org/10.1038/370615a0
https://doi.org/10.1038/370615a0

