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Abstract: We demonstrate 4-channel, 2GHz weighted addition in a
silicon microring filter bank. Accurate analog weight control becomes more
difficult with increasing number of channels, N, as feedback approaches
become impractical and brute force feedforward approaches take O(2N)
calibration measurements in the presence of inter-channel dependence. We
introduce model-based calibration techniques for thermal cross-talk and
cross-gain saturation, which result in a scalable O(N) calibration routine and
3.8 bit feedforward weight accuracy on every channel. Practical calibration
routines are indispensible for controlling large-scale microring systems.
The effect of thermal model complexity on accuracy is discussed. Weighted
addition based on silicon microrings can apply the strengths of photonic
manufacturing, wideband information processing, and multiwavelength
networks towards new paradigms of ultrafast analog distributed processing.
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1. Introduction

Advances in photonic integrated circuit (PIC) technologies [1–5] will generate opportunities
for large-scale, low-cost optical processing systems. At the same time, a revival is underway
in unconventional (neuro-inspired) microelectronic computing architectures, aimed to address
energy efficiency limitations inherent in von Neumann computers [6–8]. Neuro-inspired hard-
ware addresses these issues, in part, by distributing processing among many nodes, and, as
such, rely heavily on multi-access networking strategies in which connection strengths (i.e.
“weights”) are reconfigurable. It has long been recognized that optical physics are well-suited
to the analog interconnect problem, yet solutions based on holograms [9] and fiber [10] cir-
cuits have not led to integrated systems. We have previously proposed a PIC-compatible multi-
access analog network called “broadcast-and-weight” [11], which combines results in mul-
tiwavelength networks [12], analog photonic links [13, 14], and photonic neurons [15–18].
Broadcast-and-weight networks could open processing domains with unprecedented speed and
complexity [19]. Figure 1(a) depicts the concept of a broadcast-and-weight network.

Broadcast-and-weight relies heavily on wavelength-division multiplexed (WDM) weighted
addition. The analog network topology is “programmed” by controlling weight values. Mi-
croring resonator (MRR) implementations of weight banks, drawn in Fig. 1(b), have the advan-
tages of compactness, WDM capability, and ease of tuning. On the other hand, MRR sensitivity
to fabrication variations, thermal fluctuations, and thermal cross-talk presents a control prob-
lem. MRR control is an important topic for WDM demultiplexers [20], high-order filters [21],
modulators [22], and delay lines [23]. MRR controllers are often based on online feedback
control [24, 25], but the unique requirements of an analog weight bank (continuous range of
weights, input signals of unknown amplitude and shape, etc.) call for a feedforward control
approach with offline pre-calibration performed at least once per fabricated device [26].

Prior work demonstrated feedforward control of an add/drop MRR filter edge for effect-
ing a continuous range of transmission values. This enabled a single photonic weight with a
range of –1 to +1 [27] and precision of 3.1 bits [26] (i.e. a maximum error of ±0.117 over
the range ±1, or a dynamic range of 9.33dB). Calibration consisted of recording weights over
the filter edge tuning range and interpolating. The results in [26] are preliminary in the sense
that interpolation-based techniques are impractical for simulataneously controlling more than
one MRR weight, an essential requirement for photonic weight banks and weighted optical
networks. When weight interdependency or cross-talk are present, the control problem can
not be separated into N isolated channels. The dimensionality of the full tuning range increases
with N, necessitating O(2N) calibration measurements in general. The major contributions of
the present work are full, simultaneous control of MRR weight banks and the development of
tractable, O(N), calibration methods for banks with any number of channels.

Model-based calibration is required for the two predominant sources of weight interdepen-
dency: thermal cross-talk and cross-gain saturation. In this work, we expand on preliminary
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Fig. 1. a) Role of WDM weighted addition in a proposed on-chip analog photonic process-
ing network [11]. Each E/O node – which could be any nonlinear modulator, direct-driven
laser, or dynamical laser neuron – produces a signal modulated on a unique wavelength.
Weighted addition banks produce electrical signals that drive the E/O converters [28]. b)
Microring resonator (MRR) implementation of a WDM weight bank. Tuning MRRs be-
tween on- and off- resonance switches a continuous amount of optical power between
drop and through ports. A balanced photodetector (PD) yields the sum and difference of
weighted signals. c) Optical micrograph of the device under test, showing a bank of four
thermally-tuned MRRs. d) Wide area micrograph, showing fiber-to-chip grating coupler
ports.

results in [29], developing models whose parameters can be fit (i.e. calibrated) with a O(N) rou-
tine of spectral and oscilloscope measurements. Whereas an interpolation-only approach with
20 points resolution would require 204 = 160,000 calibration measurements, the presented cali-
bration routine takes roughly 4× [10(heater)+20(filter)+4(amplifier)] = 136 total calibration
measurements. We then assess factors affecting weight precision, including the complexity of
the thermal cross-talk model. We demonstrate simultaneous 4-channel MRR weight control
with an accuracy of 3.8 bits and precision of 4.0 bits (plus 1.0 sign bit) on each channel. While
optimal weight resolution is still a topic of discussion in the neuromorphic electronics commu-
nity [8], several state-of-the-art architectures with dedicated weight hardware have settled on
4-bit resolution [30,31]. Practical, accurate, and scalable MRR control techniques are a critical
step towards large scale analog processing networks based on MRR weight banks.

2. Methods

MRR weight bank samples were fabricated on silicon-on-insulator wafers at the Washington
Nanofabrication Fabrication through the UBC SiEPIC rapid prototyping group [32]. Silicon
thickness is 220 nm, and buried oxide thickness is 3 µm. 500 nm wide WGs were patterned by
Ebeam lithography and fully etched to the buried oxide [33]. A hydrogen silsesquioxane resist
(HSQ, Dow-Corning XP-1541-006) was spin-coated at 4000 rpm, then hotplate baked at 80 C
for 4 minutes. Electron beam lithography was performed using a JEOL JBX-6300FS system
operated at 100 keV energy, 8 nA beam current, 500 µm exposure field size, and exposure
dose of 2800 µC/cm2. The resist was developed by immersion in 25% tetramethylammonium
hydroxide (TMAH) for 4 minutes. Silicon was etched from unexposed areas by inductively
coupled plasma etching in an Oxford Plasmalab System, with a chlorine gas flow of 20 sccm,
pressure of 12 mT, ICP power of 800 W, bias power of 40 W, and a plate temperature of 20 ◦C,
resulting in a bias voltage of 185 V. Thermo-optic MRR resonance tuning is accomplished by
ohmic heating of Ti/Pt/Au contacts (100 Å:Ti, 50 Å:Pt, 2000 Å:Au), which were deposited on
top of a 3 µm oxide passivation layer using an Angstron Engineering electron beam evaporation
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Fig. 2. a) Experimental setup. An input generator creates uncorrelated signals on differ-
ent wavelengths by time delaying a single PRBS. DFB: distributed feedback laser; AWG:
arrayed-waveguide grating; PPG: pulse pattern generator; MZM: Mach-Zehnder Modula-
tor; FBG: fiber Bragg grating. The microring weight bank is thermally tuned by a current-
mode DAC (digital-to-analog converter). Drop and thru outputs are amplified by erbium
doped fiber amplifiers (EDFAs) and delay-matched before detection by a balanced pho-
todetector (PD). A computer (CPU) executes the calibration routine. b) Time domain traces
of reference input signals on different wavelength channels. c) Optical spectrum of WDM
inputs (red) and transmission spectra of the drop port when tuning current is off (gray) and
tuned onto resonance (blue), measured with a drop port spectrum analyzer (not shown).

system.
The weight bank device pictured in Fig. 1(c) consists of two bus waveguides and four MRRs

in a parallel add/drop configuration , each of which controls a single wavelength channel by
tuning on or off resonance. The radii of the MRRs are [6.37, 6.90, 7.43, and 7.96] µm, respec-
tively. Coupling region gaps were 200 nm, and neighboring MRRs are separated by 20 µm.
Q-factors are approximately 10,000. The free spectral range of the first MRR is measured to
be 15 nm, indicating an effective TE refractive index of 4.2. . The sample is mounted on a
temperature-controlled alignment stage and coupled to fiber with TE focusing subwavelength
grating couplers [34].

The experimental setup shown in Fig. 2(a) consists of a multiwavelength reference input
generator [35] that produces statistically independent signals by imparting channel-dependent
delays on a 2Gbps pseudo-random bit sequence (PRBS). These reference signals are shown
in Fig. 2(b). A 4-channel 13-bit digital-to-analog converter (DAC), NI PCI-6723, buffered to
provide up to 80 mA per channel, tunes the electrical power dissipated in each MRR heater.
The heaters share a common connection to reduce electrical I/O count. Since this common wire
is not perfectly conducting, the effective common voltage can fluctuate with total current flow.
Current-mode drivers are used to avoid this issue. The drop and through outputs of the MRR
weight bank are amplified, their net delays matched, and detected by a balanced photodiode
(PD). A transmission spectrum analyzer (not shown) is also connected to the device to simul-
taneously monitor the filter resonance peaks, tune them onto resonance with the WDM input
signals , and assist in thermal model calibration. Figure 2(c) depicts tuning the bank from the
initial state to the all channels on-resonance state.

Although input signals to the MRR weight bank are not necessarily known during an op-
eration phase, the calibration phase can take advantage of known reference inputs in order to
simultaneously measure the effective weight of each channel. In this case, references were de-



layed PRBS signals, each of which is stored as xi(t). If channel delays exceed one bit period,
then the correlation

〈
xi(t) · x j(t)

〉
t approaches zero for a sufficiently long pattern (in this work,

27 bits). All weights µi can then be determined by decomposing a single measurement m(t) in
terms of stored references:

µi =
〈xi(t) ·m(t)〉t
〈xi(t) · xi(t)〉t

(1)

The calibration routine estimates a mapping of applied current to weight~i→~µ . The inverse
of this mapping becomes the feedforward control rule for effecting a desired weight vector. We
separate the map into physical stages for thermal tuning (~i→ ~∆λ ), MRR bank transmission
( ~∆λ → ~T ), and actual detected weight (~T →~µ).

2.1. Thermal cross-talk model

The temperature of an MRR waveguide is affected predominantly by the heater directly above,
but heat can also leak between nearby MRRs. The relationship between dissipated electrical
power, ~i2R, and resonant wavelength shift, ~λ −~λ0 is linear and can be modeled by a matrix,
KKK [36]. Assuming heater resistance is constant,

~λ −~λ0 = KKK~i2 (2)

where λ0 is the resonant wavelength at zero tuning current, and KKK is a nearly diagonal ma-
trix that describes the thermo-optic effect, heat transfer coupling, and heater resistance. Off-
diagonals of KKK decribe unintended heat transfer from a given heater to filter of different chan-
nels, a.k.a. thermal cross-talk. Substituting q j ≡ i2j for notational clarity, this equation can be

put in a differential form around WDM signal wavelengths, ~λsig, and the tuning current needed
to bias filters on-resonance with these signals, ~qbias,

~λsig−~λ0 = KKK~qbias (3)
~λ −~λsig = KKK (~q−~qbias) (4)

~∆λ = KKK ~∆q (5)

This linear model is simple to calibrate and invert, but it relies on an assumption of constant
heater resistance. In general, heater resistance is also temperature dependent due to thermo-
electric self-heating. For a single current-driven heater with ambient resistance of R0 and
thermo-electric coefficient α ,

R(q) = R0 [1+αqR(q)] (6)

=
R0

1−αR0q
(7)

which is certainly not constant, and even has a singularity at q = (αR0)
−1, signifying a thermal

runaway. Instead of combining the multivariate and nonlinear equations above, we simply note
that non-constant resistance means that second and higher-order derivatives of ~∆λ in terms of
~∆q are non-zero but small enough that a Taylor expansion can incorporate the nonlinearities.

~∆λ ≈
D

∑
d=1

KKKddd ~∆q
d

(8)

where D is model order, the exponentiation of ~∆q is element-wise, and the model now contains
D distinct KKK matrices.
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The Taylor approximation’s main advantage for calibration is a simple method to fit KKK ma-
trices. The tuning current of each channel is swept over an operating range of interest (∼4 filter
linewidths), while the wavelength shift of every filter peak is measured with the spectrum ana-
lyzer. Each peak shift function is fit with a D-order polynomial to obtain one element of each KKK
matrix. The process is repeated for every channel. KKK values found in this experiment are shown
in Fig. 3. To prevent overfitting, there must be at least D spectrum measurements per channel.
We make 5DN measurements for added robustness and found a D = 2 made thermal modelling
error sufficiently small so as not to limit overall precision, which is revisited in Section 3.

The polynomial mapping ~∆q→ ~∆λ must be inverted to provide a feedforward control rule.
While it does not have a closed-form inverse, the following iterative solution converges quickly.

~∆q[0] = ~0 (9)
. . .

~∆q[n+1] = KKK−1
111

[
~∆λ −

D

∑
d=2

KKKddd

(
~∆q[n]

)d
]

(10)

The iteration takes advantage of the fact that thermo-electric effect on heater resistance, repre-
sented by the KKKd>1 matrices, are relatively small perturbations. As heaters are biased closer to
thermal runaway singularities from Eq. (7), the thermo-electric effects become stronger. This
means more steps are needed to converge, and higher orders of Taylor approximation must be
used, necessitating more calibration measurements.

2.2. Optical transmission interpolation

The transmission effect of each MRR filter edge is treated as an independent function, fi :
∆λi→ Ti, and calibrated with an interpolation-based approach orgininally developed for a sin-
gle channel [26]. 20 samples per filter are interpolated to get a continuous estimate of the
forward function, f̂i(∆λi), and inverse, f̂−1

i (T̂i). This estimate is refined by taking a second set
of samples that are nominally uniform in Ti. Calibrated edge transmission functions are shown
in Fig. 3. The advantage of the interpolation approach is robustness to arbitrary and non-ideal
filter edge shapes; however, it requires that the channel spacing be large enough that filters
do not interact optically. In this case, a minimum channel spacing of about 150GHz, seen in
Fig. 2(c), gives sufficient isolation, but future work to increase channel density must reexamine
the edge calibration approach.

2.3. Cross-gain saturation model

EDFAs at the output of the weight bank in Fig. 2(a) are subject to slow timescale cross-gain
saturation, which depends on the weight of each channel in addition to absolute power levels
that can fluctuate with polarization, ambient temperature, and fiber strain. The present fiber
experiment must model this cross-gain saturation to obtain unbiased weight bank results. While
optical amplifiers are not yet widely available on silicon PICs, semiconductor and rare earth ion
amplifiers in silicon have been investigated [37, 38], and could potentially use a similar model.
We model the cross-gain saturation effect, assuming two homogeneously broadened EDFAs in
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∆q ∆λ T µEq. 7 Eq. 14
K1 (x100)

7.38 0.02 0.06 0.12
0.18 10.5 0.04 0.41
0.14 0.63 7.52 0.05
0.07 0.04 0.22 5.91

Heater Filter Amplifier
 λsig,1 : 1547nm
 qbias,1 : (51.8mA)2

 λsig,2 : 1549nm
 qbias,2 : (49.0mA)2

 λsig,3 : 1550nm
 qbias,3 : (39.9mA)2

 λsig,4 : 1552nm
 qbias,4 : (11.5mA)2

i
Bias

K2 (x1,000)
0.03 0.85 0.77 0.08
1.54 -3.13 -1.10 -0.23
0.24 1.39 -1.29 -0.39
0.07 -0.19 -0.32 -2.52

Pos. Amp.
B+ C+

1.23 0.006
2.53 0.189
2.67 0.042
2.04 0.021

Neg. Amp.
B– C–

2.89 0.056
8.93 0.081
6.92 0.114
4.52 0.093

f1

f2

f3

f4

Fig. 3. Diagram of modelling stages showing calibrated parameter values fit during this ex-
periment. Bias stage puts variables in differential form around the state of all filters being
on-resonance with signals, ~λsig. Heater stage models thermo-electric, heat transfer, and
thermo-optic effects with a predominantly diagonal, linear KKK111 matrix and nonlinear cor-
rections (order D = 2 shown). Filter stage consists of four independent interpolation-based
estimates of the transmission along each MRR filter edge. Amplifier stage models absolute
optical powers and fiber amplifier saturation characteristics preceding photodetection.

non-depleted pump regimes, as

µi = Pin,iTc,i

Ti
g+i,ss

1+ P+
amp
P+

s

− γi(1−Ti)
g−i,ss

1+ P−amp

P−s

 (11)

P+
amp = ∑

j
Pin, jTc, jTj (12)

P−amp = ∑
j

Pin, jTc, jγ j(1−Tj) (13)

where i indicates channel number and T is the tunable microring through port transmission. Pin
is input power, Tc is net coupling efficiency, γ is drop efficiency, gss is amplifier small-signal
gain, and Ps is saturation power, which is not channel-dependent. Pamp signifies total power
incident on an EDFA. (+,–) superscripts respectively indicate the amplifiers on through and
drop output ports. Not all physical parameters are observable from weight measurements, but
the following parameterization yields a fittable model:

µi =
B+

i

1+∑ j C
+
j Tj

Ti−
B−i

1+∑ j C
−
j (1−Tj)

(1−Ti) (14)

The parameter vectors ~B(+,−) and ~C(+,−) (totaling 4N parameters) can be fit (i.e. calibrated)
with a series of 4N measurements at particular tuning states. We introduce a notation µ

(xy)
i to

signify the measured weight of channel i when the transmission of channel Tj=i is x and the
transmission of other channels Tj 6=i are y. For example, µ

(10)
2 signifies the weight of channel 2

when it is transmitted to the through port (T = 1) and channels 1, 3, and 4 are coupled to the
drop port (T = 0). The calibration procedure starts by measuring µ

(11)
i and µ

(10)
i :

µ
(11)
i =

B+
i

1+∑ j C
+
j

µ
(10)
i =

B+
i

1+C+
i

(15)
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Fig. 4. a) Two-dimensional weight sweep showing controller accuracy and precision. After
the calibration procedure, the target weight is swept 5 times over a grid of values from –1
to 1 (black grid). Black points are measured weight data. Red lines show the mean offset
from each target grid point. Blue ellipses indicate one standard deviation around the mean.
Mean error magnitude is less than 0.072 over the span. Standard deviation remains below
0.063, with a tendency to be larger for negative weights. From this plot, we estimate that the
weight can be controlled with an accuracy of 3.8bits. b) Measured traces of 2Gbps signals.
[ 1©- 9©] Output signals corresponding to points labeled in (a). The expected signal is in red,
while measured traces are in blue. All time and voltage axes have identical scales.

These equations containing 2N unknown parameters and 2N known measurements can be
solved analytically as follows.

µ
(11)
i

µ
(10)
i

=
1+C+

i

1+∑ j C
+
j

(16)

C+
i =

µ
(11)
i

µ
(10)
i

(
1+∑

j
C+

j

)
−1 (17)

By summing this equation over all i and rearranging, the sum of C+ can be stated entirely in
terms of measured weights,

∑
i

C+
i =

N−∑ j
µ
(11)
j

µ
(10)
j

∑ j
µ
(11)
j

µ
(10)
j

−1
(18)

at which point it can be substituted into Eq. (17) to recover individual C+ parameters. The B+

parameters then fall trivially from Eq. (15). Drop port amplifier parameters, C− and B−, fol-
low an identical procedure upon measuring µ

(00)
i and µ

(01)
i . The ability to decompose single

measurements of m(t) into all weights via Eq. (1) means that ~µ(11) and ~µ(00) only require one
measurement each, while the dissimilar measurements call for distinct tuning states and there-
fore N measurements per amplifier. In this derivation, it was assumed that complete switching
down to T = 0 is possible, which is not always the case in practice. A more algebraically com-
plex calibration technique with nonzero Tmin can be derived similarly, but is omitted here in the
interest of space. Calibrated parameter values found for this experiment are shown in Fig. 3.
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Once the forward model parameters have been calibrated, we must invert the mapping ~T →
~µ , Eq. (14), in order to work as a feedforward controller rule.

µi +
B−i

1+∑ j C
−
j (1−Tj)

=
B+

i

1+∑ j C
+
j Tj

Ti +
B−i

1+∑ j C
−
j (1−Tj)

Ti (19)

Ti =

µi +
B−i

1+∑ j C−j (1−Tj)
B+

i
1+∑ j C+

j Tj
+

B−i
1+∑ j C−j (1−Tj)

(20)

This is solved iteratively as follows:

Ti[0] = 1 (21)
. . .

Ti[n+1] =

µi +
B−i

1+∑ j C−j (1−Tj[n])
B+

i
1+∑ j C+

j Tj[n]
+

B−i
1+∑ j C−j (1−Tj[n])

(22)

This iteration converges quickly when C parameters are small, as in Fig. 3, which is the case
when signal powers are less than amplifier saturation power.

3. Results

After the above calibration procedure is performed, the four-dimensional command weight is
swept in two-dimensions at a time while the actual weight is recorded. A sweep of command
weight values over two channels is shown in Fig. 4. Sweeps over other pairs of channels (not
shown) were seen to produce similar results. Figure 4(b) shows time traces compared to expec-
tation at several weight values. Traces 2 and 6 represent the original inputs and traces 8 and 4
their respective inverses. The sweep in Fig. 4(a) is used to analyze accuracy, a.k.a. mean error
or repeatable error (red lines), and precision, a.k.a. dynamic error or non-repeatable error (blue
ellipses). Mean error is less than 0.072 over the range, corresponding to a weight accuracy of
3.8 bits (i.e. 11.4dB dynamic range), and dynamic error is less than 0.062 for a weight preci-
sion of 4.0 bits. Accuracy is 0.7 bits higher than in prior work with a single channel [26] due to
procedure and setup changes that minimize polarization drift.

The effects of using simplified models for thermal physics are shown in Fig. 5. When thermal
cross-talk and self heating are completely neglected (i.e. D = 1 and K1 is diagonal), accuracy
is reduced to 2.8 bits. A constant resistance model (i.e. D = 1) is used for Fig. 5(b), yielding
a small improvement to 3.0 bits. In both cases, mean errors in Fig. 5 show no clear trend,
besides being less accurate towards more negative weight values. Surprisingly, introducing a
linear cross-talk model barely improves weight accuracy. This can be explained by the sharp
sensitivity of filter transmission to resonant wavelength. The sensitive response of the MRR
filter edge necessitates very accurate thermal modelling, in this case, D = 2 provided significant
improvement. For the devices in this paper, we found D = 3 to yield negligible improvement
over D = 2 since other factors limited precision; however, MRR weight banks with different
biases, heater designs, materials, etc. may need increased Taylor orders for sufficient thermal
model accuracy. An alternative to thermal tuning is depletion modulation [39], which could
eliminate thermal cross-talk and the current-squared dependence, yet requires a more involved
fabrication process with a partial etch of the top silicon layer and four dopant levels.
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Fig. 5. Weight sweeps for simplified thermal cross-talk models over 5 iterations. The tar-
get grid (black), mean error vectors (red), and standard deviation ellipses (blue) are used
as in Fig. 4(a). a) No model of thermal cross-talk is applied, and weight accuracy is 2.8
bits (8.4dB dynamic range). b) A first-order D = 1 (i.e. constant resistance) model of ther-
mal cross-talk is applied, and weight accuracy is 3.0 bits (9.0dB dynamic range). In both
sweeps, the amplifier cross-gain calibration model is applied in order to isolate the effect
of thermal cross-talk modeling.

4. Discussion

We can make several conclusions about weight accuracy and precision by examining Fig. 4.
Negative weight values are accurate on average, but have more variability because they corre-
spond to the on-resonance condition where sensitivity to fluctuations is greater. The orientation
of error ellipses indicate a positive correlation between dynamic errors, indicating intra-sweep
power level fluctuations affecting all channels. Most likely, this is explained by drift in fiber
temperature and strain affecting polarization and therefore fiber-to-chip coupling efficiency of
all channels (Tc in Eq. (11)). Random non-repeatable errors with standard deviation 0.063 are
likely attibutable to polarization drift; however, accuracy is still limited by systemic errors,
which repeat over multiple sweeps and have a maximum of 0.072.

Several mechanisms could explain much of the discrepancy between DAC resolution (13
bits) and weight accuracy (3.8 bits), providing evidence that DAC resolution is limiting. Firstly,
the transmission T dependence on ∆λ is sharply nonuniform over the tuning range of interest
(Fig. 3). The ratio of maximum slope to mean slope is 5.3 in the worst case (ch. 2), representing
2.4 bits lost. This effect is somewhat intrinsic to filter edge tuning and difficult to improve
without affecting performance. Secondly, the DAC driver is designed to have an 80mA range
in order to cover large initial biases; however, the weight tuning range (in this case ∼1mA) is
much less. This dynamic range mismatch reduces the usable resolution by a factor of 80, or
6.3 bits, accounting for the remaining discrepancy. Controller accuracy is therefore expected to
improve by reducing the mismatch between tuning range of interest and driver range.

The range of interest for ∆q1 was 532− 522 = 105mA2. Supposing MRRs could start on-
resonance with zero bias, either by careful fabrication or by flexible WDM wavelengths, a
maximum current of

√
105 = 10.2mA would be needed to get the same wavelength shift (pro-

vided identical device/heater design). If the driver’s full range could then be set to 10.2mA,
the dynamic range mismatch could be entirely eliminated, in theory. Reducing dynamic range
mismatch is an important direction for making systemic controller errors negligible compared
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with dynamic errors, and also reducing the DAC resolution needed to achieve a given accuracy.
A natural question to ask of MRR weight banks is minimum channel spacing. Just as the in-

troduction of thermal cross-talk dictated a switch from interpolation-based calibration to model-
based calibration, weight banks with dense channel spacing will be subject to optical cross-talk,
requiring optical transmission modeling. The weight bank cannot be broken into N independent
models or interpolated functions. Since all filters couple into the same output ports, a channel
that partially couples through the “wrong” filter can still end up at the intended output, unlike
in the case of a demultiplexer wherein unavoidable cross-talk dictates minimum channel spac-
ing [40]. This suggests that model-based calibration of optical cross-talk in a MRR weight bank
could be instrumental for increasing channel density and number. Further work in this direction
will likely benefit from generalized models of waveguide circuits, such as described in [41].

5. Conclusion

We have demonstrated simultaneous feedforward control of a 4-channel microring weight bank,
which could play a major role in large scale processing networks on silicon photonic platforms.
The primary enablers of this result were scalable calibration models of thermal cross-talk and
amplifier cross-gain saturation. A weight accuracy of 3.8 bits was demonstrated, on par with
corresponding state-of-the-art digital electronic neuromorphic hardware [31]. Thermal models
that neglect cross-talk and thermo-electric self-heating were found to be insufficient, reducing
this accuracy by 1.0 and 0.8 bits, respectively. Parameterized calibration models for optical
cross-talk could be developed for more advanced weight bank controllers. Further work could
explore the limits of channel density in a single MRR weight bank, and the integration of
multiple weight banks into a broadcast-and-weight network.
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