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Abstract—We propose an on-chip optical architecture to support
massive parallel communication among high-performance spiking
laser neurons. Designs for a network protocol, computational ele-
ment, and waveguide medium are described, and novel methods are
considered in relation to prior research in optical on-chip network-
ing, neural networking, and computing. Broadcast-and-weight is
a new approach for combining neuromorphic processing and op-
toelectronic physics, a pairing that is found to yield a variety of
advantageous features. We discuss properties and design consider-
ations for architectures for scalable wavelength reuse and biologi-
cally relevant organizational capabilities, in addition to aspects of
practical feasibility. Given recent developments commercial pho-
tonic systems integration and neuromorphic computing, we sug-
gest that a novel approach to photonic spike processing represents
a promising opportunity in unconventional computing.

Index Terms—Asynchronous circuits, network topology, neuro-
morphics, optical computing, optical interconnects, photonic in-
tegrated circuits, spiking neural networks, system analysis and
design, WDM networks.

1. INTRODUCTION

EUROMORPHIC processing offers many opportunities
N and challenges distinct from those of traditional von Neu-
mann computing. It seeks to engineer scalable and cost-effective
hardware systems that take inspiration from abstract princi-
ples of biological processing, such as parallelism and sparsity.
Neuromorphic architectures promise potent advantages (effi-
ciency, fault tolerance, adaptability) over von Neumann archi-
tectures for tasks involving pattern analysis, decision making,
optimization, learning, and real-time control of multi-sensor,
multi-actuator systems. Unconventional hardware has a long
history of massive parallelism, but a more recently recognized
point of neural inspiration is a sparse coding scheme called
spiking [1].

Spike processing, while inspired by neuroscience, has firm
code-theoretic justifications. Spike codes—digital in amplitude,
but analog and sparse in pulse arrival time—can reconcile the
expressiveness and efficiency of analog processing with the ro-
bustness of digital communication, and recurrent networks of
spiking primitives possess rich algorithmic capabilities [2], [3].
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Each spiking primitive handles inputs from multiple sources
by temporally integrating their weighted sum and firing a sin-
gle spike when the integration state variable crosses a threshold.
This distributed, asynchronous model processes information us-
ing both space and time [4]-[6], and is amenable to distributed,
unsupervised adaptation [7], [8]. The use of sparse coding prin-
ciples promises extreme improvements to computational power
efficiency in particular [9].

Spike processing is at the heart of a modern generation of neu-
romorphic electronics, although no single hardware approach
has emerged as the clear ideal. Spiking primitives have been
built in both CMOS analog circuits [10], digital “neurosynaptic
cores” [11], and non-CMOS devices [12]. Many architectures
that interconnect large numbers of primitives have been pro-
posed or built, including, notably: Neurogrid [13], TrueNorth
[14], SpiNNaker [15], and FACETS [16]. The use of physics
for analog dynamical processing represents an important step
towards attaining the efficiency and functionality exhibited by
biophysical information processors, yet electronic interconnects
are incapable of the density and fan-in needed to support scalable
architectures that represent spikes as physical pulses. Despite a
wide variety of approaches in neuromorphic microelectronics,
all proposed architectures employ some form of address-event
representation (AER) of spikes. AER is a digital packet rout-
ing scheme, which incurs significant time and energy overhead
for signal encoding/decoding and network coordination, but
is well-suited for slow timescale (milliseconds) neuromorphic
systems [15].

Integrated photonic platforms represent an alternative to mi-
croelectronic approaches. The communication potentials of op-
tical interconnects (bandwidth, energy use, electrical isolation)
have received attention for neural networking in the past; how-
ever, attempts to realize holographic or matrix-vector multi-
plication systems have encountered practical barriers, largely
because they cannot be integrated, let alone with effective
nonlinear processing units. Techniques in silicon photonic inte-
grated circuit (PIC) fabrication is driven by a tremendous de-
mand for optical interconnects within conventional digital com-
puting systems [17]. The first platforms for systems integration
of active photonics are becoming commercial reality [18], [19],
and promise to bring the economies of integrated circuit manu-
facturing to optical systems. Using a device set designed for dig-
ital communication (waveguides, filters, detectors, etc.), some
have realized PICs for analog signal processing [20]. The po-
tential of modern PIC platforms to enable large-scale all-optical
systems for unconventional and/or analog computing has not
yet been investigated.
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Recent years have seen the emergence of a new class of
optical devices that exploit a dynamical isomorphism between
semiconductor photocarriers and neuron biophysics. The differ-
ence in physical timescales allows these “photonic neurons” to
exhibit spiking behavior on picosecond (instead of millisecond)
timescales [21]-[24]. Spiking is closely related to a dynamical
system property called excitability, which is shared by certain
kinds of laser devices. Excitable laser systems have been studied
in the context of spike processing with the tools of bifurcation
theory by [25]-[27] and experimentally by [28]-[30]. Some
are specifically designed for compatibility with silicon photonic
PIC platforms [31], [32]. A network of photonic neurons could
open computational domains that demand unprecedented tem-
poral precision, power efficiency, and functional complexity,
potentially including applications in wideband radio frequency
(RF) processing, adaptive control of multi-antenna systems, and
high-performance scientific computing. Although the ultrafast
spiking dynamics of laser neurons show potential in this re-
spect, most analysis of them has so far been limited to one
or two devices with minimal regard for a compatible network
architecture.

We propose an on-chip networking architecture called
“broadcast-and-weight” that could support massively parallel
interconnection between photonic spiking neurons [33]. It has
similarities with the fiber networking technique broadcast-and-
select, which channelizes usable bandwidth using wavelength
division multiplexing (WDM); however, the protocol flattens
the traditional layered hierarchy of optical networks, accom-
plishing physical, logical, and processing tasks in a compact
computational primitive. Although the proposed processing cir-
cuits are unconventional, the required device set is compatible
with mainstream PIC platforms in silicon, which make heavy
use of WDM techniques.

This paper is organized to first give background on optical
networks on chip (NoC), computing, and neural networks. We
will describe the WDM broadcast-and-weight protocol, then a
primitive node for processing and networking, and a waveguide
loop medium. Architectures consisting of multiple broadcast
cells will be proposed and discussed with respect to topology
and scalability. We have found that the implications of spike
processing (time as information) combined with WDM (wave-
length as identity) are accompanied by novel spatial freedoms
that makes this architecture uniquely suited, among artificial
systems, to emulate and explore certain biologically-relevant
organizational topologies (e.g., “small-worldness”). This pair-
ing also yields key features of practical feasibility (robustness,
cascadability, scalability), which have foiled some large-scale
optical processors in the past. We claim that various favor-
able and generalizable properties of the proposed architecture
make it a viable candidate to support a new generation of scal-
able high-performance spike processing in photonics.

II. PRIOR WORK

A. Optical Networks On-Chip

Optical networks on-chip (NoCs) have been proposed as
an alternative to electronic networks to support the demand-
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ing throughput and efficiency requirements of future multi-core
system on-chip architectures. Although the proposed intercon-
nect is adapted for a considerably different signalling model
(spiking), some of the networking techniques presented in this
paper have been investigated in a conventional computing con-
text. Optical ring networks with WDM channelization have
been proposed as a means to obtain collision-free multicast
networks, notably ATAC [34] and optical ring NoC (ORNoC)
[35]. Psota et al. have also identified lightpath splitting as an
efficient method for multicast routing on chip. The layout flex-
ibility of the ring has been exploited to accommodate a tiled
processor layout, and Le Beux ef al. have proposed using multi-
ple independent rings for spectrum reuse; however, interfacing
these ORNoC subnetworks into a single system would require
specialized switching nodes incorporating arbitration control,
unlike the proposed architecture (see Section III-C).

WDM techniques significantly increase the effective
throughput-density of a physical link; however, the requirement
of a modulator and detector for each channel can negate the
area and energy savings in some circumstances [36]. To obtain
contention-free behavior, ATAC and ORNoC stipulate at least
one dedicated receiver (i.e., detector, A/D converter, deserial-
izer, and buffer) per channel per node, potentially creating a
buffering bottleneck [35]. In contrast, the photonic spike pro-
cessing architecture sums multiple inputs in a single detector and
requires neither active electronic receivers nor distinct optical
modulators (see Section III-B).

B. Optical Computing

Motivated by the properties that have made optics superior for
communications (e.g., usable bandwidth and energy efficiency),
optical devices and architectures have long been investigated
for computing. Optical logic gates have been implemented by
myriad techniques, including self-phase modulation in micror-
ing cavities [37], quantum dot saturable absorption [38], and
many others; however, a scalable all-optical computer has so far
proven elusive. Analyses of the daunting scope of fundamental
challenges to digital optical computing are performed by Keyes
[39] and Miller [40]. A comparison of these references reveals
strikingly similar themes, which belie the progress of photonic
technology in the intervening decades — not to mention the birth
and maturation of the telecom industry. Many of the fundamen-
tal challenges facing digital optical computing remain difficult
to achieve simultaneously in a simple device.

For this reason, many attempts to leverage the capabilities of
optics avoid a digital electronic computing paradigm altogether
and instead target specialized tasks, including A/D conversion
[41], amoeba-inspired processing in quantum dots [42], and
reservoir computing [43], [44]. The utility of an overspecial-
ized optical “hardware accelerator” or “coprocessor” has so far
been outweighed by the cost of commercial platform devel-
opment, although many unconventional approaches succeed in
exploring new and interesting intersections of computing and
physics [45]. The proposed architecture avoids overspecializa-
tion with its many configuration freedoms—both in design lay-
out and in field-tunable interconnection parameters. A particular
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interconnect configuration, which determines the behavior and
function of a distributed processing system, is very different
than procedural program, where operations are represented by
a stack of instructions interpretable by a Turing machine.

This absence of procedural programmability is a challenge
for the analysis and design of all neuron-inspired architectures,
but also one of their biggest advantages. Processors that re-
linquish a framework of immutable execution could exhibit
enhanced aptitude to self-organize and adapt to uncertain en-
vironments without programmer input [46], [47]. We believe
that the architecture proposed here exhibits important proper-
ties of a computing system potentially capable of sophisticated
and widely applicable large-scale information processing (see
Section IV-B), but classify it as a “scalable photonic proces-
sor” to emphasize the fact that it does not pursue a symbolic
instruction model of general purpose computation. Among un-
conventional optical processing paradigms, neural networking
is perhaps the most commonly examined class of models.

C. Optical Neural Networks

Optical technologies for interconnection have long been rec-
ognized as potential media for artificial neural network archi-
tectures, which rely on parallel communication performance as
much as—if not more than—parallel operation of computational
gates (a.k.a. neurons). Attempts to realize the throughput, dissi-
pation, and cross-talk advantages of optics in a neurocomputing
context, while promising in many cases, have so far encountered
barriers in reliability, scalability, and cost. A review of optical
neural networks (ONNS) is contained in [1].

For the most part, approaches to ONN interconnection have
focused on spatial multiplexing techniques, including config-
urable spatial light modulation [48], matrix grating holograms
[49], and volume holograms [50], [51]. Although they are dense
techniques for all-to-all interconnection, free-space and holo-
graphic devices are difficult to integrate and also require precise
alignment. Systems that are non-integrable or that require exotic
integration processes have extreme difficulty matching CMOS
systems in cost or practical scalability.

Coherent interference effects in many-to-one coupling [52]
are particularly relevant to neural networks with large fan-
in. Phase-sensitive designs of spiking optical neurons, such
as [26], [27], must introduce methods to control the relative
phases of signals originating from distinct computational primi-
tives. Semiconductor optical devices that implement a Hopfield
(non-spiking) model have used WDM to avoid mutual inter-
ference [48], [53]. Using WDM as a non-spatial multiplexing
technique, broadcast-and-weight is compatible with commer-
cial PIC integration and can exploit this spatial indeterminism
to bestow a distributed architecture with structural features not
possible with holographic or free-space systems, as discussed in
Section IV-A.

III. SYSTEM ARCHITECTURE

The proposed architecture for photonic spike processing
consists of three aspects: a protocol, a node that abides by
that protocol, and a network medium that supports multiple
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Fig. 1.  Functional model of a spiking neural network, depicting four neurons.
Each neuron has one output signal, which is sent to multiple other neurons.
Input signals are independently weighted by an analog coefficient (represented
by grayscale value) before summation. The summed signal drives a dynamical
processing model, such as spiking leaky integrate-and-fire (represented by the
phase portrait of an excitable system).

connections between these units. Broadcast-and-weight is a
WDM protocol in which many signals can coexist in a sin-
gle waveguide and all participant units have access to all the
signals. The processing-network node (PNN) is a primitive unit
that performs the physical and logical functions required for
broadcast-and-weight networking and neuromorphic process-
ing, respectively. The broadcast loop (BL) defines the medium
in which a broadcast network exists and physically links a group
of PNNs to one another. Although the authors have made ev-
ery attempt to present these aspects in a linear fashion, they
are logically intertwined; a more thorough discussion of design
justifications is deferred until after the aspects are presented
together.

In every neural network model, each node receives signals
from many other nodes, performs some process, and transmits
copies of a single output signal to multiple receiver neurons
(see Fig. 1). Each input is modulated independently by a con-
stant multiplier (a.k.a. weight), which can be positive, negative,
or zero. After weighting, all inputs to the neuron are summed,
before modulating a nonlinear dynamical element: in this case,
a laser neuron device. The configuration of the system is de-
termined by its weight matrix, where element w;; signifies the
strength of the connection from neuron ¢ to neuron j. A single
transmission device can not alter the polarity of a signals repre-
sented as optical power, so effective neural weighting requires
two optical filters per channel dropping power into a balanced
push-pull photodetector in order to implement both positive
and negative weights. A processor can exhibit a large variety
of behaviors through reconfiguration of the weight matrix, al-
though this weight tuning happens on timescales much slower
than spiking dynamics. The problem of neural networking
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contains prominent one-to-many (multicast) and many-to-one
(fan-in) components. In the case of spiking networks, communi-
cation signals are pulses: binary in amplitude and asynchronous
in time. For interconnecting signals with spikes represented as
physical pulses (as opposed to digital packets as in AER), tem-
poral multiplexing and switch-based routing techniques are not
viable strategies because spike timing is an informatic dimen-
sion unavailable for multiplexing. The goal of our network de-
sign will be to support a large number of parallel, asynchronous,
and reconfigurable connections between a distributed group of
photonic processing primitives that is compatible with the ap-
proach of spikes represented physically as optical pulses.

A. Broadcast-and-Weight

WDM channelization of the spectrum is one way to effi-
ciently use the full capacity of a waveguide, which can have
useable transmission windows up to 50 nm wide (>1 THz band-
width) [54]. In fiber communication networks, a WDM protocol
called broadcast-and-select can create many potential connec-
tions between nodes: the active connection is selected, not by
altering the intervening medium, but rather by tuning a filter
at the receiver to drop the desired wavelength [55]. We present
a similar protocol for a spike processing network and call it
“broadcast-and-weight.” It differs by allowing multiple inputs
to be dropped simultaneously and with intermediate strengths
between 0% and 100%.

Broadcast-and-weight consists of a group of nodes sharing a
common medium in which the output of every node is assigned
a unique transmission wavelength and made available to every
other node (see Fig. 2). Each node has a tunable spectral filter
bank at its front-end. By tuning continuously between 0—100%
drop states, each filter drops a portion of its corresponding wave-
length channel, thereby applying a coefficient of transmission
analogous to a neural weight. The filters of a given receiver
operate in parallel, allowing it to receive multiple inputs si-
multaneously. An interconnectivity pattern is determined by the
local states of filters and not a state of the transmission medium
between nodes. Routing in this network is transparent, parallel,
and switchless, making it ideal to support asynchronous signals
of a neural character.

The ability to control each connection, each weight, indepen-
dently is critical for creating differentiation amongst the process-
ing elements. A great variety of possible weight profiles allows
a group of functionally similar units to compute a tremendous
variety of functions despite sharing a common set of available
input signals. Reconfiguration of the filters’ drop states, corre-
sponding to weight adaptation or learning, intentionally occurs
on timescales much slower (us or ms) than spike signaling (ps).
A reconfigurable filter could, for example, be implemented by
a microring resonator whose resonance is tuned thermally or
electronically. In a group of N nodes with N wavelengths, each
node needs a dedicated weighting filter for all (N — 1) possible
inputs plus one filter at its own wavelength to add its output to
the broadcast medium. The total number of filters in the system
would thus scale quadratically with N2. A filter design example
is given in Section III-D.
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Fig.2. Optical broadcast-and-weight network showing parallels with the neu-
ral network model of Fig. 1. An array of source lasers outputs distinct wave-
lengths (represented by solid color). These channels are wavelength multiplexed
(WDM) in a single waveguide (multicolor). Independent weighting functions
are realized by spectral filters (represented by gray color wheel masks) at the in-
put of each unit. Demultiplexing does not occur in the network. Instead, the total
optical power of each spectrally weighted signal is detected, yielding the sum
of the input channels. The electronic signal directly drives a laser processing
device, such as the excitable laser proposed in [32].

B. Processing-Network Node

In a biological neural network, the complicated structure of
physical wires (i.e., axons) connecting neurons largely deter-
mines the network interconnectivity pattern, so the role of neu-
rons is predominantly computational (weighted addition, inte-
gration, thresholding). The contrasting all-to-all nature of opti-
cal broadcast saddles the photonic neuron primitive units with
additional responsibilities of network control (routing, wave-
length conversion, WDM signal generation, etc.).

The proposed design of a PNN can perform all of these nec-
essary functions, achieving compactness by flattening the dual
roles of processing and networking into a single set of de-
vices. It attains rich computational capabilities by leveraging
analog physics offered by optoelectronics. Overall, the PNN is
an unconventional repurposing of conventional optoelectronic
devices, thereby appearing as a strikingly simple circuit with
potential to generalize to existing—and prospective—photonic
platforms. One possible implementation of a PNN is depicted
in Fig. 3, while the dual purpose of its devices are summarized
in Table I.

The PNN interacts with a WDM waveguide via two tunable
filter banks. One filter bank represents the weights of excitatory
(positive) input connections while the other controls inhibitory
(negative) inputs. These weight profiles could be stored in local
co-integrated or off-chip CMOS memory. The two weighted
(i.e., spectrally filtered) subsets of the broadcast channels are
dropped—without demultiplexing—to a balanced photodiode
pair. Photodetectors output a current that represents total optical
power, thus computing the weighted sum of WDM inputs in the
process of transducing them to an electronic signal, which is
capable of modulating a laser device. The balanced photodiode
configuration enables inhibitory weighting, which is an essential
capability of any neural network.
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Fig. 3. Processing-network node (PNN) coupled to a broadcast waveguide.
The front-end consists of two banks of continuously tunable microring drop
filters that partially drop WDM channels that are present. Two waveguide inte-
grated photodetectors (PDs) convert the optical signal to an electronic current
and perform summation operations on the weighted excitatory and inhibitory
inputs. A short wire subtracts these photocurrents and modulates current in-
jection into an excitable laser neuron, which performs threshold detection and
pulse formation in an optical cavity. The output of the laser is coupled back
into the broadcast waveguide and sent to other PNNSs. Insets represent example
spectrograms of the waveguides. (a) Broadcast waveguide with 6 WDM chan-
nels: (b) three of these channels are shown partially dropped into the excitatory
PD, and (c) two other channels are shown partially dropped into the inhibitory
PD. The channel subsets that are dropped are determined by the tuning state of
each filter (driving circuitry not shown).

Total optical power detection of a still multiplexed signal is
a relatively rare technique because it irreversibly strips WDM
signals of any trace of their identifying wavelength. This prop-
erty has been exploited in several applications including subcar-
rier optical multiplexing [56], a multi-input OR function [57],
and analog RF photonic signal processing [58]; nevertheless, it
is counterproductive in the majority of situations. Information
about a signal’s origin is desirable in multiwavelength commu-
nication systems and is maintained by demultiplexing prior to
detection. In the neurocomputing context however, this destruc-
tion of channel information is precisely correspondent with the
summation function. A photodiode can therefore be viewed in
this sense of dual purpose, not just as a transducer, but also
as an additive computational element capable of many-to-one
wavelength fan-in.

The PNN front-end is not subject to well-known optical-
electronic-optical (O/E/O) conversion overhead. The cost, en-
ergy, and complexity typically involved in O/E/O are due not,
in fact, to the physical transduction itself but instead to the elec-
tronic receiver stages (i.e., amplification, sampling, and quanti-
zation) that normally follow detection in fiber communication
links [40]. The “receiver-less” pathway connecting photodiodes
to laser neuron is not significantly affected by dispersion or
electromagnetic interference (EMI) in this case because it can
be made very short (~ 20 yum) regardless of fan-in degree.

The electronic signal from the balanced photodetector pair
modulates a laser processor, which performs some dynamical
and strongly nonlinear process, described in more detail in [31],
[32]. The modulated laser gain medium is an active optical semi-
conductor, which acts as a subthreshold temporal integrator with
timeconstant equal to carrier recombination lifetime. The laser
system itself acts as a threshold detector, rapidly dumping en-
ergy stored in the gain medium into the optical mode when
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TABLE I
CORRESPONDENCE BETWEEN COMPUTING AND NETWORKING FUNCTIONS
IN THE PRIMARY SIGNAL PATHWAY

Element Process Function Network Function

Adaptive filter bank
Photodetector

Gain medium
Excitable laser
Output coupler

Weight multiplication
Addition/subtraction
Temporal integration
Threshold detection

WDM drop-and-continue
Multiwavelength fan-in
Laser modulation
Clean pulse generation
WDM add

the net gain of the cavity crosses unity, much like a passively
Q-switched laser biased below threshold. In this way, it emu-
lates one of the most critical dynamical properties of a spik-
ing neuron—excitability—on picosecond timescales. Although
the possibility of WDM was not explicitly discussed in prior
work, the lasing wavelengths of an array of excitable distributed
feedback lasers could be tailored by altering the pitch of their
gratings [59].

By generating clean, stereotyped pulses at a single wave-
length, the laser provides the optical signal necessary for
broadcast-and-weight networking. All light can be generated
and detected on-chip. In addition, excitable lasers effectively
provide gain, since large pulse responses can be triggered by
weak input pulses. If excitable gain is sufficient to counteract
insertion and fan-out losses, this means that, in principle, ac-
tive optoelectronics would not be necessary outside of the PNN
module.

Finally, an output coupler adds the generated signal to the
broadcast waveguide. Other wavelengths are nominally unaf-
fected by this coupler, but any incoming signals at the PNN’s
assigned wavelength will be completely dropped and termi-
nated, avoiding collision with the newly generated output.

C. Broadcast Loop

The final aspect of the proposed networking architecture is
the physical medium that transports WDM optical signals be-
tween the output couplers and input spectral filter banks of a
group of PNNS. Since routing is already performed by the PNN
filters, the broadcast medium must simply implement an all-to-
all interconnection, supporting all N potential—not necessar-
ily actual—connections between participating units. This role
can be performed by a single integrated waveguide with ring
topology, which we refer to as a BL. A broadcast-and-weight
cell thus consists of several PNN primitives coupled to a BL
medium, as illustrated in Fig. 4. Its ring shape is reminiscent of
metropolitan fiber networks, though the neuromorphic process-
ing implications of the BL are worthy of further consideration.

The BL waveguide is fully multiplexed at all points along
its length. Most signal power is allowed to continue through a
PNN, even if a portion of it is dropped. This technique called
drop-and-continue is an instance of lightpath splitting, where
the information carried by an optical channel can be copied pas-
sively and instantaneously, albeit with a reduction in power [60].
The weight-dependent signal power distribution of drop-and-
continue does create an undesirable interdependency between
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Fig. 4. Conceptual diagram of a broadcast loop (BL). The loop waveguide
carries WDM channels from all participating PNNs, so each PNN can detect
a configurable subset of all channels. The PNN laser then outputs its signal,
a function of those inputs, on its unique wavelength channel. Once a signal
transverses the BL, it is completely dropped and terminated by its originating
unit to avoid interference between different parts of a channel. Filter banks and
inhibitory pathways not shown.

filter weights at different neurons, which could present a control
problem in adaptive systems. Drop-and-continue is a physical
solution to optical multicasting that can radically reduce net-
work traffic for a given virtual interconnect density [34]. In the
BL, this technique reaches it’s maximum potential, supporting
N? independent interconnections in a waveguide with only N
channels.

An example of a folded layout for tight packing is shown
in Fig. 5. Multiple BLs integrated on the same chip could in-
teract by simply designating interfacial PNNs: nodes that re-
ceive inputs from one BL and transmit into another (bottom
of Fig. 5). In this way, a unified processing system consisting
of multiple BLs can be created without any additional arbitra-
tion, routing, or device technology. BLs interacting via inter-
facial PNNs constitute distinct broadcast media and can thus
reuse the same optical spectrum, much like a cellular tele-
phone network reuses spectrum geographically. Unlike a cel-
lular phone network however, the operation of these broadcast
media is dissociated from their exact geometry, as long as the
loop topology is present. The associated spatial freedoms will be
seen to yield a promising variety of multi-BL architectures (see
Section IV-A).

D. Design Example

The design of tunable filter banks for WDM weighting can
proceed similarly to that of wavelength demultiplexers based on
microring resonators (MRRs) in conventional digital intercon-
nects. In [54], the FSR-limited maximum wavelength count for
a silicon WDM link was found to be N = 62 for a trans-
mission window of 50 nm and channel spacing of Axy, =
5.3 linewidths (0.8 nm). Heterogeneous integration platforms
incorporating III/V active sections and passive silicon-on-
insulator (SOI) waveguides have demonstrated broadband pho-
todetector responsivity and, with proper design, single-mode
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lasing over a 45 nm band (1525-1570 nm) [61]. The trans-
fer function of a resonator drop filter is approximated by a
Lorentzian function:

T(5) = H%,where 5= %@—wo) M
in which 0 is linewidth-normalized frequency, @) is quality fac-
tor (@ ~ 10,300), and wy is peak center frequency. The ex-
tinction ratio of a single filter is R = Tyax [dB] — Tin [dB] =
T(0)[dB] — T(wtun ) [dB], where wiyy is the maximum tuning
range in linewidths. For broadcast-and-weight, analysis of cross-
talk must also take into account that the resonant frequency of
each filter is shifted in order to control the weight applied to its
channel. The worst case cross-talk X;; (defined as in [54]) is not
identical between upper and lower neighbors because the filter
resonance moves towards longer wavelength channels when de-
tuned from center. For the jth neighbor: X ;o = T'(jAw)[dB] —
T(0)[dB] and Xy; = T'(wyun — jAw)[dB] — T'(0)[dB], where
Aw is channel spacing. Insertion loss on the i*" channel is
I = (]. — Ril) . H]'<i (1 — Xij) . Hj>i (]. — ij') where I, R,
and X are in linear units.

For a specified tolerable performance of R > 13 dB,
{Xj0,Xo;} < —13 dB, and I < 0.35 dB, we find WDM pa-
rameters of wi,, = 4.4 (0.66 nm) and Aw = 8.8 (1.3 nm) meet
this specification. With the 45 nm gain band of hybrid III-V/SOI
lasers, these parameters lead to a channel number N = 34 per
BL. The approximate footprint of a single filter bank in this
case is 34 x16 = 540 pum?, compared to ~4,000 um? for the
active devices in a single PNN. The corresponding BL foot-
print is 34 x 4,540 = 0.15 mm?. The BL waveguide must be at
least 34> x 4 um = 4.6 mm long to physically accommodate
this number of filters, contributing a minimum power penalty
of about 0.4 dB, given SOI waveguide loss [62]. We have made
the simplifying assumptions that every connection has a dedi-
cated tunable MRR filter, these filters are all critically coupled
to the bus waveguide, and that they are single-pole (i.e., single-
MRR). Further investigations that depart from these simplifying
assumptions could likely improve performance and maximum
number of channels (for example, using double-pole MRRs for
steeper filter rolloff [54]).

Power budget is also a very important design consideration;
however, the analysis of noise and signal power in conventional
digital interconnects can not be mapped trivially to the present
system. Although similar noise mechanisms are present (e.g.,
ASE, cross-talk, etc.), the relationship between SNR and spike
error rate in an optical spiking link requires further investigation.
For a full system design, the tolerance of overall system function
for communication errors must also be specified. This tolerance
is application-dependent, but likely relaxed compared to digital
systems, due to the statistical and intrinsically noisy nature of
neuromorphic algorithms.

IV. DISCUSSION

The broadcast-and-weight protocol is a novel approach for
combining neuromorphic processing and optical networking,
based on deep-seated correspondences between the chosen mod-
els of processing and networking. This combination gives rise
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to novel properties that are native neither to optics nor to neu-
roscience. Optical WDM in a waveguide gives the architecture
special spatial freedoms, which are not observed in other hard-
ware neuromorphic systems. These freedoms will be discussed
with respect to their practical consequences to layout and organi-
zational flexibility. The spiking paradigm has reciprocal effects
on optics as an information processing substrate. We find that
many of the common challenges of robustness, cascadability,
and scalability faced by conventional optical logic architectures
can be addressed, a possibility largely attributable to the uncon-
ventional paradigm.

A. Multi-BL System Layout and Organization

A means to interface different BLs was initially introduced
in Fig. 5 to reuse spectrum on-chip. Although PNNs in different
loops can interact indirectly via interfacial PNNs, a multi-BL
system does not exhibit the same all-to-all potential interconnec-
tion observed in a single BL. This could cause informatic frag-
mentation and bottlenecks between different parts of a system
with many interfaced BLs, effectively neutralizing the computa-
tional usefulness of scaling the node count. We argue that inter-
connect sparsity resulting from spectral reuse is not necessarily
detrimental to overall computational complexity, provided de-
sign can follow appropriate principles. When determining struc-
tural constraints in distributed processing networks, communi-
cation and computation become fundamentally intertwined, so
design rules for organizing multi-BL. architectures must shift
to invoke concepts outside of the field of communication net-
works. We find that the ability to incorporate these distributed
processing principles in an optical system is made possible by
a special topological property of broadcast-and-weight, which
we call spatial layout freedom.

1) Spatial Layout Freedom: A BL waveguide can manifest
arbitrary shape in order to accommodate any layout of a group
of PNNGs; this stipulation contrasts nearly all other approaches
to physical neuromorphic architectures (e.g., cross bar arrays
or holographic matrix-vector multipliers), where the layout of
computational primitives follows from the particular parallel
networking approach. In a situation where signals are distin-
guished based on their position, wire, or wavevector, physi-
cal layout inherits the geometrical constraints of the intercon-
nect, which can give rise to tangible limitations to interconnect
structure (e.g., Rent’s rule [63]). Biology can avoid multiplex-
ing altogether by using dedicated wires (i.e., axons) for every
connection. However, this 3-D approach is not possible with
state-of-the-art quasi-2-D fabrication techniques. While the ex-
act implications of this dimensional disparity are beyond the
current scope, one can assert provisionally that any conserva-
tion of spatial degrees of freedom could be supremely important
in neuromorphic engineering.

In the broadcast-and-select protocol, spatial degrees of free-
dom are essentially undetermined: node identity is distin-
guishable based on wavelength alone. In addition, the large
bandwidth-distance product of optical waveguides means the
corrupting role of dispersion remains small over a range of
spatial scales, compared to electrical transmission lines [64].
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Interface with another broadcast loop

Fig.5. Example folded layout of a broadcast-and-weight cell showing 5 PNNs
(delimited by green areas) and two interfacial PNNs (blue areas) coupled to a
contained BL (tan area). The lightpath of one channel (magenta) is shown
traversing the BL waveguide and branching into multiple filter banks. Originat-
ing and terminating in the leftmost PNN, this signal can be partially dropped into
any of the PNNs around the BL. Each processing node must transmit on a unique
wavelength channel, except the outgoing interfacial node (lower right), which
transmits into a different loop. Each node’s filter bank drops a linear superposi-
tion of the present channels, except the incoming interfacial node (lower left),
whose inputs are derived from another loop. Inhibitory pathways not shown.

Although WDM and bandwidth-distance properties of optics
have been used for decades in communication networks, dis-
tributed processing consequences of spatial indeterminacy have
not been explored. This is not a matter of oversight, but rather
context. Fiber telecom networks transport signals between geo-
graphic locations, a purpose intrinsically tied to space. On the
other hand, processing networks transport signals between a
group of computational nodes; it makes no essential difference
where its nodes or its signals are located. At any spatial scale,
BL implementation relies on an identical device repertoire (i.e.,
filters, photodetectors, and excitable lasers), with the exception
perhaps of bus waveguide amplifiers that are needed to counter
distance dependent loss in a silicon waveguide. Spatial invari-
ance in multiplexing protocol, signal transmission, and device
technology—in the context of distributed processing—results in
the possibility to implement interesting and important structures
in multi-BL architectures.

Fig. 6 illustrates a multi-BL structure, demonstrating key fea-
tures of hierarchical organization. Each BL reuses the same
spectrum and WDM channelization, but can represent differ-
ent hierarchical levels of organization. A level-1 BL interfaces
with other level-1 BLs (via “lateral” PNNs) and a level-2 BL
(via “uplink” and “downlink” PNNs). Interfacial PNNs can be
thought of as regular PNNs whose input spectral weight bank
receives the broadcast signals of a different BL (Fig. 5). While
similar in some ways to routing interfaces in conventional opti-
cal communication networks (which can also have hierarchical
organizations), the PNN interfaces are spike processors that
intrinsically transform information while transporting it. As a



3434

e d

eyt

BL Level 3

Fig. 6. Hierarchical organization of the waveguide broadcast architecture
showing a scalable modular structure. Colored rectangles represent PNNs. Green
PNNs indicate input and output coupling to the same broadcast loop. Blue PNNs
interface between distinct BLs and are classified as “uplink,” “downlink,” or “lat-
eral” varieties based on their position in the hierarchy. Each transmitting PNN
has a unique output wavelength within its given broadcast space, but spectrum
is reused between different BLs.

result of the processing done in PNN interfaces, network nodes
in a given BL can not directly send their outputs to nodes in
other BLs, and multi-BL systems can no longer implement all-
to-all interconnects. Instead of attempting to faithfully transfer
any one signal from one BL to another, the PNN interfaces
create mutual informatic relationships that extend beyond BL
boundaries. At the same time, PNN interfaces do not experi-
ence additional buffering or wavelength allocation constraints,
and the BL communication load is constant across different lev-
els of the hierarchy instead of growing exponentially as in pure
communication networks.

Fig. 7 shows a layout that corresponds to the network diagram
of Fig. 6. The lowest level is a tightly packed group of compu-
tational primitives connected by a folded loop (see Fig. 7(c)).
Some computational primitives can interface with other loops,
either directly with nearby first level loops, or with a second
level loop that connects physically distant components on the
chip-scale. The second level loop (see Fig. 7(d)) has a similar
functionality compared to the first level, but it occupies a much
larger area and represents a more complex dynamical process-
ing network. Although the chip scale corresponds to just the
second level in this example, intermediate levels on chip are
entirely possible. Continuing in this direction of hierarchical
levels, a multi-chip system based on fiber loops (see Fig. 7(e))
could be considered. Interfacing multiple optoelectronic chips
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all-optically through a transparent fiber-waveguide path repre-
sents an interesting possibility for further investigation.

Spatial layout freedom can be viewed as a powerful tool
to combat the sparse interconnection constraints inherent in
multi-BL spectral reuse and allow a wide potential variety of
system organization. However, determining particular multi-BL
organizations and the number of PNNs allocated at each inter-
face represent significant design challenges. Design parame-
ters that impact network structure fundamentally exceed pure
communication theory and must invoke theories of distributed
computation, such as complex network topology and cortical
organization.

2) Organization Principles for Multi-BL Architectures: De-
velopments in complex network theory have recently been ap-
plied to understand aspects of structure, organization, and col-
lective dynamics in cortical networks [65], and insights from this
field could be used to guide multi-BL system design. Complex
network theory describes relationships between interconnection
patterns (i.e., graph topology) and dynamic functionality in dis-
tributed systems, which contrasts with the study of information
capacity in static states or isolated communication channels.
While the goal of neuron-inspired processing should not be
perfect emulations of biological networks, the study of corti-
cal connectomics (i.e., biological neural network structure) also
provides examples of the types of topological features that may
be relevant for processing tasks in neuron-inspired systems. Im-
portant aspects can be judged with the tools of complex network
science and connectomics, which enable the abstraction of rel-
evant metrics of informatic and computational complexity in
distributed systems.

For example, a complex network metric called ‘“small-
worldness” describes some networks that lie between an ordered
and random interconnectivity pattern. “Small-worldness” is en-
gendered by both high clustering coefficient (i.e., cliquishness)
and short average path length (i.e., sparse long-range connec-
tions) [66]. In complex systems, small-world networks have
been associated with dynamical complexity [67] and informa-
tion integration over multiple spatial scales [68]. Small-world
characteristics are also observed in anatomical networks, rang-
ing from the simplest animal nervous system (C. Elegans), to
mammalian cortex, which has a consistently modular and hier-
archical organization throughout [69].

These biological and mathematical insights could provide
evidence to guide organizational design principles of neuro-
morphic processing systems. Spatial layout freedom means a
BL can fully interconnect a tightly packed group of processing
nodes, or it can run over an entire chip area. This coexistence of
large fan-in and long-range connections is a physical correlate
of the simultaneous clustering and short path lengths that typify
small-world networks.

In order to realize small-world topological properties in an
artificial neural network, an interconnect implementation must
support connections over a range of spatial scales. Electrical
wires exhibit a bandwidth-distance-energy tradeoff that im-
pedes this goal [64]. Systems based on spatial multiplexing
in holograms or cross-bar arrays cannot be easily detached from
a characteristic length (e.g., diffraction length) and have very
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little flexibility or potential to scale hierarchically. Spatial lay-
out freedom as described above could grant the flexibility re-
quired to meet these goals, making broadcast-and-weight ar-
chitectures uniquely suited, among artificial hardware systems,
to explore computationally efficient and biologically-relevant
network topologies.

Based on qualitative similarities between organizational abil-
ities of multi-BL systems and principles of complex and cortical
networks, we have hypothesized that the proposed architecture is
capable of enacting salient processing structures. Further inquiry
into multi-BL architecture design must incorporate principles of
complex network theory, likely including, but not limited to, the
idea of small-worldness. Concretization of the corresponding
design rules represents a formidable research problem, which
lies in the intersection of linear lightwave networks and complex
system science.

B. Feasibility of Photonic Processing With Spikes

In this section, we will briefly consider how three aspects
of practical feasibility (cascadability, robustness, and scalabil-
ity) in photonic processing are impacted by adopting a spike
processing paradigm. Cascadability is the ability of a computa-
tional element to drive multiple stages of similar devices with
fidelity in the presence of noise. Robustness refers to a system’s
potential to mitigate the effect of device defects—inevitable in
large-scale integration—on overall functionality. Scalability is
an architecture’s capacity to increase in size and complexity,
which requires a system format able to accommodate modular
expansion without performance degradation.

1) Cascadability: In digital electronic design, a logic gate
needs power gain to fan-out to multiple other gates, and it must
have logic-level restoring behavior to suppress noise. These
conditions usually imply cascadability in electronics, yet a more
multifaceted notion of cascadability applies to an optical device
due to the extra dimension of wavelength (or phase). This extra
degree of freedom can be a major boon to functionality in an
optical system (e.g., WDM) but can introduce vulnerabilities to
new sources of uncertainty (e.g., wavelength drift). In particular,
systems that exploit WDM can suffer from a need for wavelength
conversion.

The proposed PNN co-integrates the complementary physics
of optics and analog electronics in order to address cascad-
ability issues in WDM. The PNN curtails propagation of
phase/wavelength noise from one stage to another by interleav-
ing optical representations with an analog electronic part of
the primary signal pathway. The photodiode-laser setup “con-
verts” information from multiwavelength inputs onto a single
wavelength output, physically capable of driving other PNNSs.
However, total power detection for wavelength fan-in is insep-
arable from an analog summation function. While this effect
would corrupt channel information in digital signals, the sum-
mation is precisely correspondent with weighed summation in
models of neuromorphic processing.

All-or-nothing output quantization is critical in spiking
paradigms because the significant amount of analog processing
is vulnerable to amplitude noise. The excitable laser employs
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Fig. 7. An example layout strategy for a hierarchical network demonstrating

the scale-independent nature of a waveguide BL. Computational primitives are
classified as (a) interfacial PNN, whose output is coupled into a different BL
waveguide than its inputs and (b) non-interfacial PNN, which transmits and
receives in the same BL. (c) A broadcast-and-weight network constitutes the
first-level of hierarchy and consists of a group of potentially all-to-all connected
computational primitives. In this case, it takes a folded shape for the sake of
packing efficiency. (d) A chip-scale second-level broadcast network intercon-
nects the interfacial PNNs from many first-level BLs. First-level BLs can also
interface directly via lateral interfacial PNNs (purple dotted lines). () A multi-
chip third level network illustrating a compatibility with fiber implementations
of a BL. The broadcast-and-weight network is conceptually the same as in
other levels, but the BL waveguide consists of coupled fibers and integrated
waveguides.

cavity-mediated optoelectronic interactions to realize spiking
dynamics at ultrafast timescales, which allow it to perform hy-
brid analog-digital information transformations in a small foot-
print [31]. These dynamics, shared by spiking biological and
analog CMOS neurons, prevent noise generated in analog por-
tions of the pathway from propagating through the system and
eventually corrupting signal integrity. Fan-out can pose a prob-
lem to optical processors because splitting is accompanied by
an N-fold reduction in signal power. This loss could be counter-
balanced by laser excitable gain, in that small input pulses can
trigger the release of a much larger quantity of stored energy, or
with additional waveguide amplifiers in the BL.

Spikes carry information predominantly in their timing, so
time skew has the potential to corrupt signals. The authors
of [70] noted that differences in electronic and optical signal
transmission can cause timing requirements that make the leap
from combinatorial logic to sequential logic highly nontrivial.
However, since synchrony is not a critical aspect of the spike
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Fig. 8.  System failure rate as a function of the number of nodes comparing a

conventional hard-wired circuit (blue dash-dot line, Equation (2)) to broadcast-
and-weight systems with varying amounts of hardware overhead (7%: green
circle, 9%: red triangle, 11%: cyan square, and 13%: magenta cross). The exact
failure rate of the BLs (markers, Equation (6)) differ from the approximate error
function curves (solid lines, Equation (4)) due largely to integer rounding. Even
though the hard-wired system is shown here with nodes of 10 times higher
reliability (5 - 1073 versus 5 - 10~ failure rate), the systemic reliability of a
BL can be much greater than the hard-wired system and even the reliability of
a single element (black dotted line).

processing paradigm, strict conformity of timing parameters
is not necessary. The asynchronous nature of broadcast-and-
weight provides a mechanism to perhaps even exploit hetero-
geneity in spike timings in order to implement advanced spa-
tiotemporal algorithms, such as [71]. On the other hand, the
effect of noise on pulse timing (i.e., jitter) is relevant in deter-
mining spike precision and channel capacity.

2) Robustness: Suppose a given distributed processing task
requires n computational primitives. Each device has some fixed
reliability: the probability that it will work successfully psqcc.
Since the system requires all devices working, its failure rate is
given by

Pyt = 1 = plice- (2)

Systemic failure rapidly approaches certainty as the system size
(i.e., node count) increases. This unreliability is particularly
important for large-scale integrated systems since, a defective
transistor or laser device cannot simply be replaced after the
fact. Robustness can be improved by increasing device yield,
a strategy that is not always practicable, or by incorporating
hardware redundancy called overhead. It is impossible to know
ahead of time which devices will fail, so overhead must cover
every possible failure, even though each is highly unlikely. If
each primary device is given a backup device (100% overhead),
the majority of overhead hardware will remain unused, and a
joint failure of both primary and backup devices could still
disable the system. More sophisticated ways of incorporating
redundancy based on coding theory can be applied in special
cases, but no general code theoretic approach to robustness in
Boolean systems has yet been identified [72].
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The broadcast-and-weight network can easily incorporate
small amounts of hardware overhead. Since all PNNs have
access to all signals in a single BL, they can be swapped in-
terchangeably in the event of device defect or death. The PNNs
are functionally similar, so any unused PNN can virtually swap
its interconnection relationships with any defective PNN by ex-
changing filter bank weights. Overhead PNNs therefore do not
backup a single primary PNN, but rather cover all possible fail-
ures in the BL. Virtual swapping through reconfiguration can
react to specific failures that occur both during fabrication or in
the field. Programming a reconfiguration to avoid defects can
be very energy and computation hungry in some systems (i.e.,
field-programmable gate arrays) due to the intensive problems
of placement and routing associated with mesh networks [73].
In contrast, a broadcast network has no corresponding constraint
in mapping automata to devices, trivializing the hardware opti-
mization problem.

The ability to easily swap the role of every hardware primi-
tive means that system success now requires any n processors
to work out of a total of m = [(1 4 a)n] PNNs in the BL,
where a is overhead ratio. If the number of working PNNs

k € (0,1,...,m) is a Poisson random variable
m m—K
P [k] - <k> p§ucc (1 - pSllCC) ' 3)
n—1
Prayy =

> Pl @)

For large values of n, this failure rate can be approximated

P(k) ~ Norm (k ; mpsucmm(l - psucc)) (@)
1 MPsuce — N

P ~ —erfc | —m———— 6

Fail 5 2T — poncs) (6)

where Norm (k; i, 0?) is a Gaussian function with mean y
and variance o and erfc (-) is the complementary error func-
tion. System failure rate as a function of network size is plotted
in Fig. 8, comparing the robustness of hard-wired systems to
broadcast-and-weight systems with varying amounts of hard-
ware overhead. The system with swappable nodes inverts the
conventional trend, exhibiting a failure rate that decreases expo-
nentially with the nominal node count. Surprisingly, systemic
reliability can even be better (in some cases by orders of mag-
nitude) than the reliability of a single node.

This mechanism of robustness through swapping could be
very useful in other on-chip photonic networks; however, it
does not extend arbitrarily to computational models outside of
neuromorphic processing. Only processing elements invariant
to input ordering (e.g., addition, NAND, etc.) allow for swap-
ping of nodes. In most other processing models (e.g., Fredkin
gates, CPU cores, etc.), the sequence of different inputs must
remain distinguishable to a processor. This invariance to input
sequence in a summation corresponds to a photodetector de-
stroying wavelength information, which is a key compatibility
between the photonic physics and neuromorphic function of the
PNN.
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3) Scalability: Any processing technology is also subject to
notions of scalability since it will be compared to the highly de-
veloped and continually advancing microelectronic standard.
Broadcast-and-weight can expand to multi-BL architectures
due to modular abstractions of the PNN and BL, in which
performance-limiting electrical links are very short and mem-
ory of weight values can be locally co-integrated. Modern trends
in photonic integration practices that support WDM techniques
could grant photonic spike processing architectures a pathway
to low cost manufacturing [19], [74]. Fabrication reliability of
large-scale integrated systems could be greatly enhanced by the
fault mitigation techniques discussed in Section IV-B2. While
many other aspects of feasibility were not considered here, we
have attempted to address the most common issues faced by
prior optical information processing systems and believe the
potential benefits of appropriately implementing a neuromor-
phic paradigm in an integrated optical platform constitute a
reasonably compelling motivation for further investigation of
photonic spike processing.

V. CONCLUSION

We have proposed a simple integrated scheme for paral-
lel photonic neural interconnects called broadcast-and-weight,
which exhibits properties unique among neuromorphic pro-
cessors. The broadcast-and-weight architecture draws together
principles of fiber optic communication, techniques of compu-
tational neuroscience, and recent technical advances in photonic
system manufacturing. A reconfigurable PNN was proposed to
grant networking functionality to a recently developed excitable
laser processor, which behaves dynamically like a spiking neu-
ron model. The PNN is a circuit method: it can be implemented
with existing standard devices but could generalize to incorpo-
rate more advanced technologies, or even electronic dynamical
units. By combining spike processing with WDM, a BL network
exhibits a spatial flexibility that enables scalable spectrum reuse
with great potential for organizational variety. An architecture
of interfaced BLs appears to address many of the challenges
encountered in prior proposals for scalable and feasible optical
information processing, due in large part to particular corre-
spondences between physical processes in optoelectronics and
behavioral functions in the spiking model.

The present work solicits several possible directions for fur-
ther research. To determine power use requirements, the sources
and effects of noise on excitable laser neurons must be charac-
terized. Adaptive control—both external and unsupervised—of
many filter degrees of freedom represents a significant engi-
neering challenge. Development of an untapped regime of high-
speed, high-complexity processing would also call for develop-
ment of applications and corresponding distributed algorithms,
which could incorporate ideas from computational neuroscience
and complex systems theory. The demands of these algorithms
could further concretize design rules for multi-BL organization.
The proposed architectural principles reveal an expansive scope
of further challenges, yet they may represent a small step to-
wards an unfamiliar and compelling model of photonic spike
processing.
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