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Abstract: Neuromorphic photonic processors promise orders of magnitude improvements in both 
speed and energy efficiency over purely digital electronic approaches. We will provide an overview 
of silicon photonic systems for deep learning inference and in situ training. 
OCIS codes: (200.3050) Information processing; (200.4700) Optical neural systems; (250.5300) Photonic integrated 
circuits.  

 
There has been a substantial increase in the use of many-core parallel processing systems for a variety of tasks in high 
performance computing (HPC). Artificial intelligence (AI), in particular, is growing at an alarming pace: deep learning 
models have been doubling in size every 3.5 months, far outpacing Moore’s law [1]. These systems have much greater 
communication overheads than classical von Neumann architectures such as CPUs, resulting in a dramatic increase 
of both the area and energy consumption of metal interconnects (see, for example, Ref. [2]). They are also bottlenecked 
computationally by the ability to perform matrix multiplications efficiently, which represent the most common 
operations in HPC. The most computationally expensive task in current AI models is the implementation of neural 
networks. Current deep learning models require dense, low-precision matrix computations [3,4]. Digital instantiations 
of matrix (or tensor) units typically suffer from high communication overheads, expensive digital operations, and high 
latencies. On the other hand, photonic linear operations—such as passive fourier transforms [5] or matrix operations 
[6]—exhibit stark advantages in bandwidth density, latency, and energy. 
 

 
Fig. 1. Schematics for incoherent (top) [7], [8] and coherent (bottom) [9] implementations of tunable photonic multiply-accumulate operations. (a) 
Incoherent approaches can directly perform dot products on optically multiplexed signals. However, they rely on detectors and O/E conversion for 
summation. (b) The ability to multiplex allows for network flexibility, which can enable larger-scale networks with minimal waveguide usage. (c) 
Coherent approaches can apply a unitary rotation to incoming lightwaves. This unit can perform a tunable 2 × 2 unitary rotation denoted by U. (d) 
Example of scaling the system to perform a matrix operation in a feedforward topology, using a U unit at each crossing together with singular value 
decomposition. 
 

Photonic technology has traditionally been used for long distance communication. However, modern bandwidth 
requirements and the standardization of silicon photonic integrated circuits (PICs) has led to the proliferation of shorter 
distance photonic links. For example, silicon photonic transceivers are now a pervasive component in datacenters. 
There has been growing interest in using silicon photonics as an enabling platform for unconventional computing [7], 
[9-13]. This could result in a new class of ultrafast information processors for neuromorphic information and signal 
processing, machine learning, and HPC. Neuromorphic photonics [14] can enable new class of applications where 
low latency, high bandwidth, and low switching energies are paramount. These applications could include nonlinear 
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programming (e.g. solving optimization problems and partial differential equations), scientific (e.g. protein folding 
simulations) and high-performance computing (e.g. vector-matrix multiplications), machine learning acceleration (e.g. 
deep learning inference, and ultrafast and online learning), and intelligent signal processing (e.g. wideband RF signals, 
fiber transmission equalization, spectral mining). 

In this talk, we will provide an overview of current neuromorphic silicon photonics architectures (se Fig. 1) 
including coherent approaches based on Mach-Zehnder interferometers [9], [13] and incoherent (multiwavelength) 
optoeletronic approaches based on microring resonators [7], [11], [12]. We also describe several real-world 
applications for control and deep learning inference. Lastly, we will discuss scalability in the context of designing a 
full-scale neuromorphic photonic processing system, considering aspects such as signal integrity, noise, and hardware 
fabrication platforms [3].  
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