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Abstract: We demonstrate a simple photonic spatiotemporal pattern recognition 
(polychronization) circuit enabled by cascading two graphene excitable lasers. This technology is 
a potential candidate for information processing and computing.  

An unconventional computing paradigm inspired by neuroscience [1] is being intensely explored for its potential to 
outperform von Neumann architectures in certain problem domains. Pairing neuromorphic technology with 
photonics could potentially grant the capacity for complex, ultrafast categorization and decision-making [2]. The 
ideas of biophysical computation algorithms in the context of harnessing the high speed, high bandwidth, and low 
crosstalk available to photonic interconnects [3][4] could provide a wide range of computing and signal processing 
applications (e.g. adaptive control, real-time embedded system analysis, and cognitive RF processing). 
Neuromorphic signal processing incorporates a sparse coding scheme called spiking. This hybrid analog and digital 
processing technique takes advantage of both the bandwidth efficiency of analog computation and the noise 
robustness of digital computation [5], making the spike-based approach attractive for information processing. We 
recently discovered [6][7] a close analogy between the dynamics of lasers and those of spiking biological neurons, 
both of which can exhibit excitability [8]. However, to enable this emerging computation paradigm the following 
key criteria must be met: logic-level restoration, input-output isolation, and cascadability [9]. 

Here, we demonstrate a photonic spatiotemporal pattern recognition circuit. This simple experiment provides a 
proof-of-concept for cascadability and input-output isolation in excitable lasers for spiking neural networks (SNNs) 
while simultaneously demonstrating polychrony [10]—an important concept in computational neuroscience, defined 
as an event relationship that is precisely time-locked to firing patterns but not necessarily synchronized to a global 
clock reference. Polychronization presents a minimal spiking network that consists of cortical spiking neurons with 
axonal delays and spike-timing-dependent plasticity (STDP), an important learning rule for spike-encoded neurons. 
As a result of the interplay between the delays and STDP, spiking neurons spontaneously self-organize into groups 
and generate patterns of stereotypical polychronous activity. 

The computational primitive in our experiment is a graphene excitable laser. Graphene, a 2D atomic-scale 
hexagonal crystal lattice of carbon atoms [11], could be an excellent candidate in excitable laser processing devices 
[12][13] as a consequence of its nonlinear saturable absorption due to Pauli blocking, which includes ultrafast carrier 
relaxation, low saturable absorption threshold, large modulation depth, and wavelength-independent absorption (due 
to linear dispersion near the Fermi energy). We experimentally demonstrated [12][14] an excitable fiber laser 
incorporating a graphene saturable absorber (SA) for a variety of complex operations including pulse regeneration 
and reshaping, asynchronous phase locking, interspike time encoding, and coincidence detection. 

 
Fig. 1. Spatiotemporal pattern recognition circuit with two cascaded graphene excitable lasers. 

One of the key properties of polychronization is the ability to perform delay logic to perform spatiotemporal pattern 
recognition. As shown in Fig. 1, we construct a simple two-unit pattern recognition circuit by cascading two 
graphene excitable lasers with a delay τ between them. The excitable laser cavity [12] consists of a chemically 
synthesized graphene-SA sandwiched between two fiber connectors with a fiber adapter and a 75-cm long highly 
doped erbium-doped fiber (EDF) as the gain medium. A 980 nm signal pumps the EDF providing a constant bias 
and bringing it above transparency, but saturable cavity losses from graphene prevent lasing. The input channel, 
1480 nm excitatory pulses, induce perturbations to the gain section increasing its carrier concentration by an amount 
proportional to its energy. Enough excitation results in an excursion from equilibrium, causing the laser to emit a 
pulse at 1560 nm as a result of the saturation of the absorber at transparency. 

573

ThB1.2 (Contributed)
9:00 AM - 9:15 AM

978-1-4577-1504-4/14/$26.00 ©2014 IEEE



 In our case the objective is to distinguish (i.e. recognize) a specific input pattern: a pair of pulses separated by 
time interval ∆t ≈ τ (equal to the delay between the excitable lasers). These analog inputs are directly modulated 
with an arbitrary waveform generator and are incident on both the lasers. The outputs from the first laser are fed to 
the second laser via a single-mode fiber (SMF), which acts as a delay element, and a photodetector (PD) to modulate 
the laser diode (LD) (allowing wavelength conversion from 1560 to 1480 nm). It has recently been shown [15] that 
such an excitable laser and PD system can emulate both a leaky integrate-and-fire neuron and a synaptic variable, 
completing a computational paradigm for scalable optical computing. The dynamics introduced by the PD are 
analogous to synaptic dynamics governing the concentration of neurotransmitters in between signaling biological 
neurons. The second laser is biased such that it requires stronger perturbations to fire; it will not fire unless two 
excitatory pulses (original input and output from the first laser) are temporally close together; that is, when ∆t ≈ τ. 
Synchronous arrival of these two spikes causes enough excitation above the threshold causing the laser to fire a 
pulse. The system therefore only reacts to a specific spatio-temporal bit pattern. The resulting experimental data—
output pulse profile as a function of the normalized time interval between the two input pulses—is shown in Fig. 2. 

 
Fig. 1. Measured output pulse peak power, pulse duration, and input and output waveforms as a function of the time interval between the two 

input pulses. Output pulse energy is the largest when ∆t ≈ τ showing the system only reacts to a specific spatiotemporal input pattern. 

In conclusion, we have demonstrated a spatiotemporal pattern recognition circuit enabled by cascading two 
graphene excitable lasers. This simple demonstration of temporal logic implies that SNNs of such excitable lasers 
are capable of categorization and decision making. Combined with learning algorithms such as STDP, networks 
could potentially perform more complex tasks such as spike-pattern cluster analysis. Because of the length of the 
cavity, our system’s dynamics are observed on µs timescales; however, ongoing research on graphene 
microfabrication [11] may make it a standard technology accessible in integrated laser platforms and could be an 
enabler for applications of optical computing [3][4] operating on picosecond timescales which is eight order of 
magnitude faster than its biological counterpart. 
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