
Silicon Photonics for Training Deep Neural Networks  
 

Bhavin J. Shastri1,2, Matthew J. Filipovich1, Zhimu Guo1, Paul R. Prucnal2, Sudip Shekhar3, and 

Volker J.  Sorger4 

 
1Department of Physics, Engineering Physics & Astronomy, Queen’s University, Kingston, ON K7L 3N6, Canada 

2Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA 
3Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 

4Department of Electrical and Computer Engineering, George Washington University, Washington, DC V6T 1Z4, USA 

shastri@ieee.org 

 

Abstract: Analog photonic networks as deep learning hardware accelerators are trained on 
standard digital electronics. We propose an on-chip training of neural networks enabled by a 

silicon photonic architecture for parallel, efficient, and fast data operations. © 2022 The 

Author(s)  

 

Photonic systems for information processing have gathered significant interest as an alternative to conventional 

electronic computer architectures [1]. The emerging field of neuromorphic (i.e., neuron-isomorphic) photonics 

[2] proposes implementing high-performance neural networks and related machine learning algorithms using 

electro-optic circuits. These applications require high bandwidth, low latency, and low energy consumption. As 

such, the last decade has seen a rise of photonic neural networks [1], [3] that can be divided into feedforward and 

recurrent, including random recurrent, i.e., reservoir computing [4]–[6]), or coherent  (single-wavelength) [7–9] 

and multiwavelength [10]–[19] approaches, or continuous-time networks and spiking networks, or integrated 
approaches and free-space. 

An area of machine learning that would benefit from the low power consumption and high information 

processing bandwidth enabled by photonics is the training of large neural networks. Several photonic architectures 

have been proposed for executing in-memory computation of neural network inference [7], [10], [13]. However, 

for the neural network to perform a practical task, the optimal network parameters (weights and biases) must first 

be determined using deep learning training algorithms. These algorithms have high computation and memory 

costs that challenge the current hardware platforms executing them [20]. The substantial energy required to train 

large neural networks using standard von Neumann architectures presents a high financial and environmental cost 

[21].  

The recently proposed direct feedback alignment (DFA) supervised learning algorithm [22] has gathered 

interest as a bio-plausible alternative to the popular backpropagation training algorithm [23]. The DFA algorithm 

is a supervised learning algorithm that propagates the error through fixed random feedback connections directly 
from the output layer to the hidden layers during the backward pass [23]. Unlike backpropagation, the DFA 

algorithm does not require the network layers to be updated sequentially during the backward pass, enabling the 

algorithm to be a suitable candidate for efficient parallelization using photonics. The training algorithm has been 

used to train neural networks using the MNIST, CIFAR-10, and CIFAR-100 datasets and yields comparable 

performance to backpropagation [23]. The DFA algorithm has also been shown to obtain performances similar to 

fine-tuned backpropagation in applications requiring state-of-the-art deep learning networks, including natural 

language processing and neural view synthesis [24]. A recent theory suggests that training shallow networks with 

the DFA algorithm occurs in two steps: the first step is an alignment phase where the weights are modified to 

align the approximate gradient with the actual gradient of the loss function, which is followed by a memorization 

phase where the model focuses on fitting the data [25].  

This talk will summarize our recently proposed silicon photonic architecture [26] that uses an electro-
optic circuit to calculate the gradient vector of each neural network layer in situ, the most computationally 

expensive operation performed during the backward pass. The proposed architecture exploits the speed (10s of 

GHz range in photonics but only 100s of MHz in electronics) and energy advantages of photonics to determine 

the gradient vector of each neural network layer in a single operational cycle. 

While practical neuromorphic processors may be years away, we have outlined in [10], [27] some 

scientific and technological advances necessary to meet the challenges. 
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