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Abstract—With the increasing demanding for data processing 
and application-specific hardware, photonics can out-perform 
electrical IC in terms of speed and energy saving. Here, we 
present our Photonic Tensor Core architecture, showing high 
components density, with error rate lower than 4% on image 
edge detection. 

Index Terms—Photonics, Silicon Photonics, Tensor Core 

I. INTRODUCTION 

Data centers are the driven point for the new data-based 

era we are experiencing. Considering the storage capacity 

of all the data centers, the total amount of data stored has 

reached 2,300 Exabytes in 2021, with an average year-to-year 

grow of 22% since 2016 [1]. In this framework, hardware 

and architectural limits have started to appear, as data centers 

can’t keep the growing pace by simply expanding their 

infrastructure. Moreover, novel algorithms that highly rely on 

Machine Learning approaches are becoming more and more 

diffuse at every levels, adding pressure on the data center 

hardware, but also on the edge computing units, exploiting 

the Internet of Thing paradigm. To address these limitations, 

specific hardware and IC have been designed, such as 

GPU and TPU, in particular for Deep Neural Network 

(DNN) algorithms, that permit to perform Matrix-Vector 

Multiplication (MVM) at higher speed than traditional CPU. 

The MVM task is crucial for most of the DNN algorithms, 

as it is the mathematical way to connect and weight all the 

neurons of one layer to all the neurons of the following layer. 

However, electronic hardware still presents some limits, in 

terms of throughput and energy consumption. 

 

Photonics field have presented several novel architectures 

to address those limitation, relying on the virtually infinite 

bandwidth and energy-free interference of the light beams. In 

table I, we present a comparison between the major integrated 

architecture, either based on matrix decomposition [2], or on 

direct matrix multiplication [3], [4]. 

In this work, we present our approach that links together the 

major strength points from those architectures. Using coupled 

add-drop microrings resonators, we can perform MVM task, 

showing good performance on experimental image processing. 

Moreover, our architecture shows the possibility to integrated 

directly P-RAM element, such as GSSe [5], allowing its use 

also on edge computing devices. 

 

TABLE I 
SCALING  COMPARISON  OF  VARIOUS  APPROACHES  ON  PERFORMING  MVM  OPERATIONS  USING  PHOTONIC  CHIP-BASED  COMPONENTS. 

N = SIZE OF INPUT VECTOR; M = SIZE OUTPUT VECTOR; P-RAM = PHOTONIC RANDOM ACCESS MEMORY, ALLOWING FOR ZERO-STATIC POWER 

CONSUMPTION, ONCE THE WEIGHTS ARE SET. 

 
2*Type of Operation Y = V T ΣUX 

 

 

Y = MX 

 
 

 
[This work] 

Input 1 Laser, N Modulators 1 Comb Laser, N Modulators N Lasers, N Modulators N Lasers, N Modulators 

Outputs M(=N) Photodiodes M Photodiodes M or 2∗M Photodiodes M Photodiodes 

Area/Basic Element Area N 2 + N N ×M N ×M N ×M 
Controllers 2N 2 + N N ×M 2(N ×M ) N ×M 

Parallelization No WDM Off Chip WDM On Chip WDM On Chip 

Weight Bit Resolution 8/10 5 >5 5 

P-RAM No Yes No Yes 
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Fig. 1. Architecture and result of our Photonic Integrated Circuit. (a) Structure of a PTC module, (b) its integration on the PIC and setup, and (c) the photo 
of the PIC. (d) Optical transfer function, with the selected wavelengths. (e) Power map of one module with 2 inputs varying the weights, measure in current 
of the integrated photodiode. (f-i) Image edge detection: from the original BW figure, we obtain the ideal one (using MATLAB) and the Experimental one, 

before and after threshold filtering. The result shows an error rate of 3.41%. 

 

II. RESULT   AND   DISCUSSION 

 

Our architecture uses coupled add-drop microring res- 

onators linked with attenuator to perform the dot-product for 

the MVM task. In particular, as shown in figure 1a-c), the first 

column of microrings acts as WDM de-mux, while the second 

one acts as WDM combiner. The weights are implemented by 

attenuator, that can either be high-speed MZI, VOA, or P- 

RAM element. In this case, we use large ER slow-speed MZI. 

We realize the Photonic Integrated Circuit (PIC) using active 

AMF Silicon Photonic platform. 

From the measured spectrum in figure 1d, we experimentally 

obtain the power map from the integrated photodiode using 

2 input wavelengths and varying their weights. We then use 

our PTC to compute the edge detection from the George 

Washington, as shown in figure 1f-i). The used kernel detects 

the edge from the four directions, using 3-bit weights. The 

result shows a good agreement with the computed result from 

commercial software, indicate the good performance of our 

PTC also for large figure. Considering as errors all the PTC 

pixels that don’t match with the ideal result, we can compute 

an error rate of 3.41%. Future implementation will focused 

on the fast variation of weights for online training, and edge 

computing by using P-RAM components integrated in the PIC 

[6]. 
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