12 United States Patent

Faisal et al.

US011936691B2

US 11,936,691 B2
Mar. 19, 2024

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(63)

(60)

(1)

(52)

SECURE CLOUD COMMUNICATION
ARCHITECTURE

Applicant:

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

US 2021/0385247 Al

Queen’s University at Kingston,
Kingston (CA)

Md. Abu Faisal, Kingston (CA);
Mohammad Zulkernine, Kingston
(CA)

Queen’s University at Kingston,
Kingston (CA)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 50 days.

17/339,073
Jun. 4, 2021

Prior Publication Data

Dec. 9, 2021

Related U.S. Application Data

Provisional application No. 63/035,330, filed on Jun.

D, 2020.

Int. CI.
HO4L 9/40
HO4L 9/06

U.S. CL
CPC

(38) Field of Classification Search

CpPC ... HO4L 63/16; HO4L 63/163; HO4L 63/166;
HO4L 63/08; HO4L 63/04; HO4L 63/06;

(Continued)

(56) References Cited
U.S. PATENT DOCUMENTS

2006/0105740 A1* 5/2006 Puranik HO04W 12/30
455/410
2009/0097657 Al1* 4/2009 Scheudt HO4L 9/0841
380/277

(Continued)

OTHER PUBLICATTIONS

Barker, E. et al., “Recommendation for Key Management Part 3:
Application-Specific Key Management Guidance”, U.S. Depart-
ment of Commerce, National Institute of Standards and Technology,
pp. 1-102, (2015).

(Continued)

Primary Examiner — Shaqueal D Wade-Wright
(74) Attorney, Agent, or Firm — Stephen J. Scribner

(57) ABSTRACT

A cloud communication architecture addresses shortcom-
ings of traditional security protocols (e.g., SSL/TLS) 1n
cloud computing, providing security for data-in-transit and
authenticity of cloud users (CUs) and cloud service provid-
ers (CSPs). The architecture also protects the communica-
tion channel against attacks such as man-in-the-middle

(2022.01) MITM) (including eavesdropping, snifling, identity spooi-
2006.01 | "
(01) ing, data tampering), sensitive information disclosure,
(Continued) replay, compromised-key, repudiation and session hijacking
attacks. The architecture includes a high-performance cloud-
. HO4L 637168 (2013.01); HO4L 9/0631 focussed security protocol. The protocol etliciently utilizes
(2013.01); HO4L 9/083 (2013.01); the strength and speed of features such as symmetric block
(Continued) (Continued)
Chonst User ’{.Uj Lioud Servey {ﬂi
‘_‘i—f;?;qqf;-‘i;; T | : ';f.} y
"“F:::i:i:i: AR o SR) SRS Ju 2
G, YeHicKeeYaKS T i o HE
............................... ; { E&
" R 5 i _ﬁ : :_;,Er:i_?:,,;ﬂ,h;m:,:,_ﬂﬁ:-_ﬂ,_,_h_-_ﬁ_;f_,’$r_f_ﬂ._?k_:ﬂ_?: i e i e ﬁEW
! - S b L ¢ d — : bl
i ey i B Ll ey |)8
| spmoretie | e] ek | et | e (]t 1B
N — R ! i Forion | ; - I SR : Funttiﬂn% ',"::: E
i ; E E ; Regpalr Geieratian % % EE
am I Z :-;:ﬁﬂ$::ﬁﬂ$::::ﬂ::lﬂi';Eﬂiﬁiﬂi‘;:iiﬁﬁﬂﬁ%f ___ Tol ottt bttt medieon ot e ne :_:;3:
; S ; TR
(o bicenstiey ul i eeUE . Hin
; oy {ESE SIRNERE NN
e T . roor e How
¢ L el el T ks e e e b

rodstich CHent's
Anat Koy SHONTD
Yarnm, Pubie Kevi

P Sy T L Ry T T T B T o T e T o B T B e R TR TR T TR B R TR T R T B T T T

Sectel Key Seatravon

o TP

''''''''''''

Puitiigh {PLHO
Enceypig Charine!

: ““.r-‘u. 2ele ::"d:: ItF‘-E +.-'!-{' R}

L e i e T L LT I L L L T L L LT L Ll L L L LI L LTI IT

................
LLLLLLLLLLLLLLLLL

Senrd ‘fncrg.;:r o8 S}g:~:+d]

Luohish Sevver’s
Romi Kay SIGNRED
Yaosg, Pusin days

fhadse

++

M -

Sescion Estatdishiomnt

Seorst Ney Qaneration

l|
B
r

: ne
e L

-
E
| '
Cheryptflscryot Signed + Decryot/Tncryot Signed '; & g
tata usiag Sysemetils Enerypies Channe! : Data Gstivg Syrametyic -
T
*mmmmmm - - |‘ ‘- E
Encryption fereive Enarypted Signed Datz Erarvorion i -
L
. 5)
3 L I 5
: e { : = — -
. e : :'] L : L
: P Releasing fasotiroes ‘ — : CONNErion E L EE
¥
. e g f , i : : | &
P { * P
e Bk B R A R e R R e I R N e I) }'_.....__...._....._'. ++++++++++++++++++++++++++ -y

US 11,936,691 B2
Page 2

encryption with Galois/Counter mode (GCM), crypto-
graphic hash, public key cryptography, and ephemeral key-
exchange, and provides faster reconnection facility for sup-
porting frequent connectivity and dealing with connection
trade-oils. Embodiments have enhanced security against the
above-noted attacks, and are superior to TLSv1.3 (the latest

stable version among the SSL successors) in performance,
bandwidth consumption, and memory usage at the server-
side.

21 Claims, 9 Drawing Sheets

(51) Int. CL
HO4L 9/08 (2006.01)
HO4L 9/30 (2006.01)
HO4L 9/32 (2006.01)
(52) U.S. CL
CPC ... HO4L 9/0841 (2013.01); HO4L 9/3013

(2013.01); HO4L 9/3236 (2013.01); HO4L
9/3247 (2013.01); HO4L 9/3297 (2013.01);
HO4L 63/0272 (2013.01); HO4L 63/0428
(2013.01); HO4L 63/045 (2013.01); HO4L
63/061 (2013.01); HO4L 63/166 (2013.01);
HO4L 9/0894 (2013.01)

(58) Field of Classification Search
CPC ... HO4L 63/061; HO4L 63/0451; HO4L
63/0272; HO4L 9/08; HO4L 9/083; HO4L

0/0841; HO4L 9/30; HO4L 9/3031; HO4L
0/3236; HO4L 9/3297; HO4L 9/0631;
HO4L 9/3247; HO4L 9/0894
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2013/0297757 Al* 11/2013 Hanccccoeennnns, HO04L 41/40
709/222
2014/0281531 Al* 9/2014 Phegade HO4L 9/0825
713/168
2015/0039890 Al* 2/2015 Khosravl HO4L 63/061
713/171
2018/0278588 Al* 9/2018 Cela ... HO4L 63/0227
2021/0344511 Al1* 11/2021 Devarajan HO4L 63/0281

OTHER PUBLICATTIONS

Barker, E. et al., “Iransitions: Recommendation for Transitioning
the Use of Cryptographic Algorithms and Key Lengths”, U.S.
Department of Commerce, National Institute of Standards and

Technology, pp. 1-30, (2015).

Cramer, R., et al., “Design and Analysis of Practical Public-Key

Encryption Schemes Secure against Adaptive Chosen Ciphertext
Attack™, Siam J. Comput. vol. 33, No. 1, pp. 167-226, (2003).

Ronen, E. et al., “The 9 Lives of Bleichenbacher’s CAT: New Cache
Attacks on TLS Implementations”, IEEE Symposium on Security

and Privacy, pp. 435-452, (2019).

* cited by examiner

U.S. Patent Mar. 19, 2024 Sheet 1 of 9 US 11,936,691 B2

ﬂm.tc% Lizar {.ii:iﬁ}i Cioud Server {01

g mgl wing gl myln - gagie wyin coyinge ingh wying: jngin mgln, jagn ngn, wging ngs wyin c giagh gl gng ings wying jagh wyin, Jag Cngn v jagh wyin, c jag g

Hh?ﬂ‘ﬂh#fﬂﬂﬂiflﬂ‘ﬂhiﬂ‘ﬂhj
Reghdration
Flaays

lll
........

Asyrmmateic Wich

Function

- -

{

L X X X X X B X K K X K J
i e sy s e s sl s e e

nitiatization
Phase

B T R R I L I T R R P R N TR '- --'-- iiiiiiiiiiiiii B - E YA RS FA S FAE . B B PR EE ERF S R RS R B R R AR SR B R B B -B BN R EEEE BN B B - - F RS kR R B P e T A T R R B R I R A N A I A B I A B NI N B IO T N R LA i -
Tt aeet W R R T T T, T, T R R R T, G, e "--" “'--".-"-u-".-"- ¥y r"-n"u-"'-."'-u-"' "--"' gl "-u-"' "--"'..-"-n-".-"-u- iy T iy g, g, "-u-"' gl "-u-" "-u-"‘ gt g gy |-"-|"-|-"'-."'-|-"' "-u-"' g Mty T, gl Tl R R R T T T, T, R R R Rk Ty T, T i, R R R T T, T R R Y e, iy g,

Publish {PLBY

Rmt Eﬁ‘&f &iﬁﬁiji‘s | Encrypted Lnannet | Rect ?:ey Seﬁwfﬂ
Tarsmsgs. Prsbilic Reys o Beknowhedys {ACK}

Sesshir fstablisturung
Phase

iiiiiiiiiiiii
11111

L4

§SSI058% ¢

-

Plase

-
L]
L]
¥
L]
L]
"
L
L]
¥
L]
L]
¥
L]
L]
L]
L
L]
¥
L]
L]
"
L
L]
L]
L]
L]
¥
L]
L]
L]
L
L]
¥
L]
L]
¥
L
L]
L]
L
L]
¥
L]
L]
L]
L
L]
L]
L]
L]
¥
L
L]

g
¥

i
I.

?ﬁu .

Dt Trassen

A
A

Lo gl
B

Phase

1l o o ol ol
Y T Ty

Torpanation

| |

Fig. 1

US 11,936,691 B2

Sheet 2 of 9

Mar. 19, 2024

U.S. Patent

DRergAREt paMERR

Z "8

5 2 ¥
FROHEG TR0 m : st Rt B A 3
@ﬁ B fben . 4 ¥ %ﬂ% Frrams werg W g t,
wﬁ..k. ..“w.wnmu.rwﬁ w” .:...:t::-::::-::::...t:p..:_.:_L:.I:::..#.r::::-::::-::_L..:_...!.t_:_:.:::.I::::.m_ti.:.!::::-. b ot ot t bha b :..._:_....:_L:_Lm_..._._._
,ﬁm%m % mﬁw g SRR MO0 DU R SOOD S 1 DA Seuminss na petfas reitn m.m SIS e |
wonep ity Mztz - 3 :

A A A A A R A R R AR A AR R R R R R AR R R A R A R R R R A R R R R R R T AR A R R R R A R A R R R R R R A R R R R R R A R A AR R R R AR A R A R AR AR A R R R R A R A R R A R R A A R R R R R R R A AR R A AR R R R AR A AR R AR AT i_l
u
T T S T T SR .
7 ST .‘l .h.tl_ BT EN TR T)
o I o o T N o B I o B e o e T " e B 2 A B X a B N = o ol ol i R o ol
5 T e o e B T i i o Tl e e e T i o ey i e i o L e, e >
A i
[

rrrrrrr #}.t.i.}rt.i.}.t.i.}.t.i.ﬂt.i.}.t.i.}.t.i.}.t.i.}.t.i.}rt.i.}.t.i.}...ﬁ_.,...“.r.__..}.t.i.}.t.i.}.t.i.}.t.i.}.t.i.}.t.i.}.t.i.}.t.i.}.t.i.}.t.i.}.t.i.}.t e e b F

: 3 “ .

LT PR T P P L P L F L L R L e P R T L Py Py l...l l..l...-_. . .l...l..-_ .._.I.I - a'e' sl..ltt...l e . .- .l..l...l..l...-_l...l..l..l.l - s .. l..l..T..l...l -l . l...l..._....l..l - . .l...l..._ ..l...-_ - l.._.l .l...ﬂ - .._.I.I - . l..l...-_ - .. .l..l_[...l... .._.l.l -'aom'e . .._.l...-_...l.l. - l...l ..l..-_....l.l. P L P L P L P T L L P L A P P -
-

SREVEBIE FROL W
ORI DRI PSS TR 4

L L L L L L PR L E R LR L LR L L L L L P R L L L L R L L L L L LY P L P L L L LY

el el el w ke, e e e e

FRIARC D
=23 wn v Al .,
%ﬁ%ﬂ#&
_m@ﬁﬁ 135S D

K
L]

%ﬁ@%ﬁﬁ .ﬁmﬂ R R ..Mwn..ﬂ. mu"ﬁwrﬂ £33 4 .ﬁu ,ﬁ,ﬁﬁm @xﬂﬁﬁﬂ@, SrRES wﬁﬁmﬁ; m.mwww Lt ..,,w @awww%wm SR

3
e
del
%
%
?z
ﬁ
‘v.
% 4
helt.
if.i
L
'WS

wWhAen 2

-_n.
k*llMlIllllllllllllllllllllllll..__:._._..__:._.:._._.._._..__:._.:._.:.__:._.:._._..___.._.:._.:.___.._.:.__..._.:._.:._._..__:._.:._._.._.:._._.._._..__:._.:._.:.__:._.:._._..__:._.:l“..._.:._._.._.:._.:._._..__:._.:._._.._.:._._.._._..__:._.:._.:.__:._.:._._..__:._.:._.:.__:._.:._._.._.:._.:._._..__:._.:._._.._.:._._.._._..__:._._.._.:.__:._._.._._..__:._._.._.:.__:._._.._._.._.:._._.._._..__:._._.._._.._.:._._.._._..__:._._.._.:.__:._.:l..__:._._.._.:.__:._._.._._.._.:._._.._._..__:._._.._._.._.:._._.._._..__:._._.._.:.__:._._.._._..__:._._.._.:.__:._._.._._.._.:._._.._._..__:._._.._._.._.:._._.._._..__:._._lllllllllllllllllllllllllllllll]
Py e e t-_ ..
[L .
TN .&u....w .m va.m.%ﬂ&..ﬁ LHAT A .sﬁ.ﬁm

o AL R Ll Y N..ﬁx.. wa R I

L C .u_
l.“ .1.' - I_.". . ' . * . } . B } “ '.'.'.'.'.

A g, gy Bt
v

Wi 50 A Dugi

‘. et et .t e & et A — . A .. e rm s .I..:.!.,:!I..:.!.,:!I!.!.,:-n.!.T..:.i e . e "t A e et A e A A et et mrad A A . . A e A . ..,-!:I..i!.iw:m.....
3 AR WIY LS P B AR e DT il S B Y i
WE SRS TG b 3 .mm
N - b hmg w......wﬁ ﬁ.ﬁ %, 5908 %.ﬁ mﬂ@%@
peaiie HsEnG X T ST
DS PRSADUS gl] AW IEEE YOMIS NN DG NN 18 ¥
swopns (o] j
s : SRS DRGSO DOy %@m e el %&.ﬁ
: ! -3
¢ v
¢ _§ :
} -3 b
w sSSP g g | :
: :
} 3
¢ 3 5
M w “
” 4 :
W b :
* $
! 1 : >0 S " - -t WA LR R L L Y - -
: { 4 AE R 20N SIRMASE DO ISR Y
¢ ” . "3
W W UDRRRIGS PRy s 1 L
N_ i ; R - .
- _ i 305 38w s

SRR =
doRdae AW I RUeD

m R ﬁﬁﬁ mww“..wm

T A A R A A N W A N A N N N N A N Y A W N N g W A gy
gl Pl gl gl gl ol gl gl Pl el gl ol el gl gl ol ol gl P g

b -
ll

progied ¥ou peasede g o Apdans

%

3 g

z i o * 5 P
P pAnpuegne mepps s idioop oy Lo
w .w . - . . P -

el et sttt

ﬁ..rmw mwu. um...%mmw&.%‘w“

W ApRusERE
A T

{pomns vy "sfsemn pred 2y o
: _ e Lo I TR |

g

e Y e e e e e Ve e T e e T e f e e e N e e e e e e gﬁ?;&m&.lﬂ.}ég T T e e e T e e e e e e Ve e e e e Ye e e T et e e e e

R phor iy O i e paniie pegtiuie wmg pUes Yy

US 11,936,691 B2

e,

HﬂﬁﬁﬁﬂﬁhﬁﬁFth@U@?ﬁﬂ--

:_ .@.m .: .,..mmwh,. ﬂ.&wm .%w% mM%%m .m.ww uw.hﬁ_.ww& ot m.w..,wm

§ S vy wliessen wond B el
___1 L LI . . a1
A

TR

§
:
:
2
3
3
:
:
:
§
:
:
:
§
:
:
2
5
3
:
:
2
:
1
:
3
2
:
:
:
3
2
:
:
:
:
2
:
:
:
3
;
g
|
:
:
:
;

*
e
oY

sty o a0 ol oves eoed s P Ep
fpuasas uig “eBessow wud ol 4

i[r‘f‘r[rif‘..l._I..__l._.l..__l.__l...l.__l..._l._.l..._l.__l.._.l._I..__I..I.._I.__I....l.__l..__l._.l..__l.__l.._.l._I.._I._I.._I._I...I._I.._I._iul._l.._.l._l...l._l...l._l.._.l._I..__l._.l..__l.__l....l.__l..__l._.l..__l.__l...l._I..__I._.l...l.w..l.__I..__l._.l..__l.__l.._.l.__l..._l._.l..__l.__l.._.l._I..__l._.l..__l.__l.._.l.__l..__l._.l..__l.__l.._.l.__I..__I._.l..._l.__l.._.l._I..__l._.l..__l.__l....l.__l..._l._.l..__l.__l.._.l._I.._I._I.._I._I.._.l._l.._l._l.._"r[rifir[rf

ey B A R T B e e S T

“““ﬁ“ﬁ“ﬂ“ﬁ“ﬁ“ﬂ“ﬁ“ﬁ“ﬂ“ﬁ“ﬁ“; . .!.
fute wtats et

st g
poulny peioss
AR Py

i ’
Rl Xr X rrr L r Y]

P e e

e b

a’ otat 't

%
;
¢
e P B o

Sheet 3 of 9

BTG RO S O Peopieg
spomirad vauing Dol RNEy B

: {puBans g eleusan e 30y el

pias juiE PO B O DAt uanard pendie el g et |

P peoied qugnd peulis s pisee g [

IR Pl ey 7

e e

3
:
:
ﬁ,
;
;
;
..“
3
_..“
;
:
:
V
;
;
:
:
“_
:
3
:
4
“
A
;
:
%

gy e e

Mar. 19, 2024

AEases v Xy s paed puss L

ittt E L LD

earanins o wirenm wand Ao piwel

| w..l., P L LR L el R L b b L i b L b b A .-.,.l.,.l,i,.l,r..lf .1.._.-.,.. e . . i;lf.i...l.u.l,.l...l_.ﬂ. a
NI N e e . . e I

A R PO %A BT Suodie P

iR sy 0 eleusm e BUes 17

LA LR LY

Breves way efessenswnd my pead |

FAeg DHEEO PN 0N BE SONHD SRR Y

. AR EEREREEEE RN

A g e s e, n g

R R R

,,,,,,
EE XX XN

_ | . s sesh oy
> " _ ; W . 4
SOURYSUL PR Py WO3E Py | sonng iy ety e

L3

P

R g g e e g by e R e g N g g, B e W g 8 e, e e, e 'Jf""*‘.'*'*'.'*'*f'*'*‘.'*'*f'*‘*f’-‘-‘.'-'-‘.'-‘-f’-‘-f’-‘-f’-‘-f%

h‘-‘-‘ﬁé
¥

oty

......

B . T T T T T T T T T T T T T I T I T T I T I’

U.S. Patent

US 11,936,691 B2

Sheet 4 of 9

Mar. 19, 2024

U.S. Patent

(pu0od) ¢ "8i

- - §

B,

o AR AR iR R AR R

‘?&;
oy
B
%
5
¥
3%
poA
¥
S
o
@
£
%
L
¥

jhndd a0 i w
w33 5 Ao SR LTI S T
45 S AESURERE { SpriaEs B T elRIRSa HOu a0 1sy

. g .l' . - L | . .
M ﬂ.ﬂ%&l\w \ : . .M L ¥ - Ty Ty Tyl ey Fer' gy TPyl Mgyl Ty gy Syt Mgyrigiiy Sy g, Ty Myl Tyt Sy oTyl, Ty Mgy Tyt Wiyt S, ltltlltlﬂjlalilt-;“tlt“ltloltltl Wyt Ty¥ By Mgy TeTy¥ Tyt Jiy® Sgfyt Sy, Ty Tyt yigl Syfgt Tyl Ty l.‘-.tltltlltlt- iy Tl T ro gy Ty ST T g S Ty T Ty T Sy Ty, T it g T Sy STl Ty T Ty ST, Ty
* . 1 .

S Oy g O furaatend ennudsel sl geniis DA nD g HIEE 0D

DEMMESA ARG e h

EALBR PR

L L L L

Wm

X .Illllllllllll!II!II’IIllIIlIIlIIh’IlIIl'IlIIlIIlIIlIIlIIlIIlIIlIIlIIlIIlIIlIIlIIlIIlIIlIIlIIlIIllllllllllllllllllllllll

H -

ENTRES DO Sl 0y elesseui yoed s 11 :
£ h.. : imsoses il elesiens soed xy pt
15 o, 3 0 S S
§ OISR DRI s o3 poosiad sendas Doy poulis DeRiialis S s g

L L AL LR L LT LY L L

..

e
s
>
3
%a
£
X
-
vy
v
&
4
;E?
F
L
=
X
B
g
3rx
.- -
.
gy gy,

. "aTa tame” fiaa wfa” Tats’ aTaas Teta s Whed . e raTa tete ffafa wma” e’ e Tt e e Tale’ eas tae ate e .aliul}?-.-fﬂliatggsgaaggggﬁgggﬁgggﬁig }_3.E-&%.EE}?E;.E.E}?E}?.E.EISE}?.E.E}?E;.E;E}?E;.E b

.....................................

3

KA

{praatioy o TelEnnasay el o pressd

o A o o o o o o o o o o o o o O o o o o o o O o A o A o R R O A A R O A '

[R5 SN DO A) et OUUNUnS DU 12

BURYEE PG BRI 1) 7

e

Tiidd-{-{-{d-{nn*)

'.'.'"."."."'"'".".".".".".""'."."{

psuien Soaong v i Atibaw
@ ARHBIENG SREpaa R S G g

SEOGESE Bl 0 SDOESMN YT BUSE PO

X T TN

TR R R BRI W O R R

. k& ffffffffffffff..I...I....l...I...I....l...I...I....l...I...I....l...I...I...I...I...I....l...I...I....l...I...I....l...I...I....l...I...I....l...I...I....l...I...I....l...I...I...I...I...I....l...I...I....l...I...I....l...I...I....l...I...I....l...I._m...l...I...I....l...I...I....l...I...I....l...I...I....l...I...I....l...I...I....l...I...I....l...I...I....l...I...I....l...I...I....l...I...I....l...I...I....l...I...I....l...I...I....l...I.f‘a‘f‘a‘f‘a‘f‘f‘fﬁf‘f‘f‘f‘f

B

peied peassi | Mm

B 30 Fubags | Pusss g ehestal ped gy

.....

s, v s S e v 3 S e v e e e aviey AR S e R +
RAOGIBEN e oo oy 08 peoyied wsuodse: poop paubn pudious My pues §G

'1i""F'i#ﬁ*“#""F""*"#""#'!!

.g{..".".".".".".".".".'

drlr= el =l ol =l el - Wl vl el e ode ol el - el ol el mle ol delr - el woled ol e el el - el woleh el e el e - el el el ke b

™
&

PRRTA R ;

pep 2y beed] Nm X

B atadhiaaniivieir e et i bttt S G R S i sR et e R R e e A e (L S SR R M e e e R et e B
o

Wi kA A s

frsenss waay ehesssns yied vy st

._ mm EsIE PO s o peokedd panbas potp peufs pedlious sy s

2

i A s N Er N CS
... -
. R R . "
.. mﬁmMM$mwg %.mlgm-.wjm . A ‘ﬁmm‘ . - . . - . . - . . - . . - . . - . . - . . - . . - . . - . . - . . - . . - . . - . . - .M
.. T A s
B e e e e e e e e e e e e e
. .“ W B - - e e e s e s e e - .
’ . H H

U.S. Patent Mar. 19, 2024 Sheet 5 of 9 US 11,936,691 B2

Centeal Ke}’ Server (CKS) ol

- - - - - - o
e : :\'-.:\"*l:‘P!:l.":l‘-.:l"#l:‘r!:lll: -
. . ‘l' ':‘-:l':-;{.‘:-::h‘##:-: ""'-i- L] :‘:*:‘.:. : :q y l.
] "Ii*‘ .l‘-I'l‘ l‘-l#l l‘!‘l‘ 'l‘ " l.."'-'i._."'-l l‘l‘
ponralgtaly M Wl g Tyt R a xr "a
» '-.*-.*1"-.*1. "4'4-"-1-‘4 '.4.14.":.‘.:"4 1.:.'.4 * *ll -.'-Iq'n.‘i*-." o “- . "il-‘-i__

............................ * A)
.-"'"'l'-.' . -
.1.'

[T TR TRy RN Ry TRR TR TRy TRUY TSI iy PRy (R (R A P P R Ry (RS R Py Ty e Py
-
.

M
F
e
)
. .
..
)
F
?l
H

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
.l-

'..;-

Ly 47b ”;:;::;:5::;::;,,;,. ::

?dHHHHHHHH?l?l?l?l?l?l?l?l?l?l?l?l?lHﬂﬂﬂxﬂxﬂﬂﬂﬂﬂxﬂxﬂxﬂpﬂxﬂﬂx
]

h
#
4

honthinan

S R LT T :
. - . . - -""""‘ . - . . - . . -
. g R g » et
. . . o i el T e e e .“""“""
o AN b Ok e e
T ST i: WY g A .-.-.,-.,-.,-.i.-.-,_,_. S)
. . - T LN » '1.' U I
:) : ".," 'ianl S "l S "l " "l " " i Y] Vi ol "l Y T .," ".. .- . .,". . ., ..,", - N ‘,".,"". s :) : :) : :)
. . . Wt - g T e
- e T T o L B T e e e . .
L L] [l |
. . et " Y .". *"- "' 4 ' “' .'I . - . f e e e e . - .
= & B BB [L LA i | [l L |
. . Al m Tn T el pa
. ‘_- “u, "y el e,
.'lllll.l.l.l.l.l.l.l.I.l.i.l.l.i.l.l.l.l.l.l.l.l-l'1" . . - . - - . . - . . _t"'"'""""""""". ";.. . . - -
il ' E
kx b |
by _.1_. . . i 4 - .
L . - M A A N A N A
.‘. L J » 1.- . . X xﬂxﬂxﬂxﬂxﬂxﬂxﬂxﬂxﬂxﬂxﬂx
kx " 1.-) ; . M "H"HHH"H"HHH"H"HHH"H"
:_lr o L _ I .
¥ '1_. . . b - X \ . . * I
.‘"‘ -|‘ 1-' - - - - - M M N N M N N M A N N K NN NN NN N NN NN N HHHKH"H F xxx"xx ’
kx W L L oo sl e alal a alaala aad a al a a
'-‘ -' ._- 0 0 ! 0 0 H 0 x
kx b | P, A A
[. - .
kR a1 $ WA
"drq-44#44#44444#44444#44#4'1 . . . L A N~ I 2 R A I L P ",
& F . - b > xi!

TIIIIIIIIIIIIIIIIIIIIIIL 4]bﬁ-
r Az S

) WAL
’ -..I:I;ll:i:ll:ll:
» L,

-ll -l- LK
R I

e e b e A e A i b o W

it :'a"n it n'a":"n ot - ol ax iy i, I a”
. I :ux:uxn:u:ux:uxn:u:uxnxnuunuunuunuunuunuunuur
L R, A, L ol N ol i P i i e L e L W
| . 1 M X e . »
- : ‘-"‘-L"‘-'L“'“- i i e i) Moy * i i
............ : DRt e e . N Hﬂlﬂnﬂlﬂnﬂl . - 'H‘l'u-'vv "1.- A . 'xxxxxxrx "
T AT R TR TR T AR b TR E AL A y i o o i o .
& - -.| -'J. q..-. q-ll. LY -'| -J. T |-‘- - i'p [™) .) 5 » . . "x .
- *'I'..'-I..‘.‘ T ‘;- *l" T I|'Il.'-‘u."."r" » Nt
'r" ‘e ye 'y I';j P 1_1-':‘."'_1..1-'. . L 2 L
'.l, ' -I-'l- S N R e R J-'.l"'l-:g-'q- lmki\i : : .
LU MUk et B B Nl I R IR U Bt I U MM O N P e e M M e M e N M s
b.ﬁ.- i i-.i-.i-.i- ---------- o ‘-‘:‘hl-.b.b - R M e i i . i i . i i . i i LI -

-

a000000000000000000

twDééféiiéﬁsii5ififif555

A 0 0 0 0 - 0 0 - 0 0 - 0 0 - 0
o s e e e e e s o e s e e e e e s e e e e e e e e o e "4 - ..
-|".n-n-n-i-n-t-tbttbttbttbttbttbtl-{- . 5 - .
: : I'I'_‘.E -
hF -
o ' -
1k .
.| 1 o . W
[I] -
‘l F L . f .
1F -
| 1 L . W -
[J .
‘l 3 r . f .
b iy .
ir LS .- .
, '3 o+
‘l 1 . .
L} I‘
:-' '-l.-l-.i.-l-.-l.-l._-l.-l.i.-l-.-l-.-l-.-l-.-l-.i.i.i.i.i.i.i.i.i.i_ll 'F'
- 4 = []
T T e e A et
e
T - TN N) LI FE I A) Y
P __._I-|':._Ill:.:'l-."._l_m..-_._Iiir pM :'I‘ .‘F.-..'q‘.:-““‘q-;H-
-l- e L L S L R Rt f‘
oy g Pt A -i._-q.l‘_. o N g I‘_'.;!lu"l‘ "
r‘b“'. l":.'l- A I‘:‘J-"l*l .'J-':'*:I-":-:-l-'t“:’-"‘\" " i."‘ Gu fa’ E ‘ﬂ
phn sk g g A R B ."'.,‘,‘_.
wr owr e e e e e e e e e m e o r w w ow b---b---l‘l'
E e e B ol Be o B e B B B ol B ol B B B B B i B ol B ol B - -_'q"‘ilq.*
“ ey
I _..:'.. -

Fig. 4

U.S. Patent Mar. 19, 2024 Sheet 6 of 9 US 11,936,691 B2

.

Exscution Time in Cloud instance {TCP)

e TLOV L3
Embodiment without
""" session reconnection
—e— EmMbodiment with

' Session reconnection

) o

1608 S008 1KB SO0KE MR

Payioad Size {Bytes)

Fig. S5A

_—

Roundtrip Time in Client Instance {TCP)

i T1G9 1,3

Embodiment without
session reconnection

Embodiment with
6Si0N reconnection

Avg,

1008 5008 1KB SOUKE 1MB

Payload Size {Bytes)

Fig. 5B

U.S. Patent Mar. 19, 2024 Sheet 7 of 9 US 11,936,691 B2

Bandwidth Overhead {TCP)

L T T T T T T T T T T T T S T T S T S T TR T

B TLSv1.3
i‘.;‘: __ . EmbOdiment Without
- session reconnection

N

R - . Embodiment with
< session reconnection

..

ikB SOCKR 1848

Payioad Size {Bytes)

Fig. 6A

g I 0 T
160
140
.
100

&l

&0

-~ Plaintext

sed {(MB)

o TLEY 1,2

Embodiment without
session reconnection

-ﬁi{:} .. EmbOdfment Wlth
LY ~ session reconnection

Amount of Memaory U

1008 S5Q0R 1K8 500QKR 1RAR
Pavioad Size {Bytes)

Fig. 6B

U.S. Patent Mar. 19, 2024 Sheet 8 of 9 US 11,936,691 B2

Execution Time in Cloud Instance {UDP)

ation 1

300 -

__.__.___ mmm

o Embodiment without
. ’ n -

Eﬁ{} SESS'OH l’E‘COﬂﬂECtIOﬂ

Avg., Exed

Payicad Size {Bytes)

Fig. 7A

Roundtrip Time in Client Instance {(UDP)

Embodiment without

SessSion reconnection
Fmbodiment with
session reconnection

U.S. Patent Mar. 19, 2024 Sheet 9 of 9 US 11,936,691 B2

Bandwidth Qverhead (UDP)

EEDTLSv12

Embodiment without
session reconnection

Embodiment with
session reconnection

1008 500B 1KB J0REB Z20KE 30KB
Favinad Size {Bytes)

Fig. 8A

-

Memuory Usage in Cloud Instance {UDP)

e 3 LNV LS
Embodiment without
s@ssion reconnection

Embodiment with
S@ssion reconnection

Pavioad Size {Bytes)

Fig. 8B

US 11,936,691 B2

1

SECURE CLOUD COMMUNICATION
ARCHITECTURE

RELATED APPLICATION

This application claims the benefit of the filing date of
Application No. 63/035,330, filed on Jun. 5, 2020, the
contents of which are incorporated herein by reference 1n
their entirety.

FIELD

This ivention relates generally to the field of cloud
computing. More specifically, the invention relates to pro-
tocols, architectures, and software for providing secure
cloud communications between cloud-connected computers.

BACKGROUND

Security concerns such as data breaches and tampering,
weak 1dentity, man-in-the-middle, credential and access
management, insecure apis, malicious insiders, account
hijacking, system and application vulnerabilities, denial of
service, and shared technology vulnerabilities have hazard-
ous 1mpact on the cloud. Different aspects of the cloud have
different types of security concerns. Cloud communication
1s one ol the most important aspects 1n cloud architecture.
According to National Institute of Standards and Technol-
ogy (NIST), cloud 1s a model that enables ubiquitous,
convenient, on-demand network access to a shared pool of
configurable computing resources [Melt et al., 2011]. In
terms of communication with and within the cloud, this
network access 1s an internet-based Transmission Control
Protocol (TCP)/User Datagram Protocol (UDP)) communi-
cation. Based on the types of network access, these com-
munications can be further categorized as client-to-cloud,
intra-cloud and inter-cloud communications. All these com-
munications can be grouped together as Cloud Communi-
cations. Cloud service providers (CSPs) support TCP com-
munications for providing cloud services to their customers
or having back-end communications within their own cloud
infrastructure or with other cloud providers. Due to increas-
ing user demand, some CSPs support UDP communications
for connectionless services such as online gaming, stream-
ing, media transier, internet of things (IoT), and native UDP
applications. These communications are mostly protected by
existing traditional security protocols (e.g., Secure Sockets
Layer (SSL)/Transport Layer Security (TLS)/Datagram
Transport Layer Security (DTLS)). However, these security
protocols should be more eflicient to handle cloud commu-
nication related security 1ssues.

Every now and then, a new security threat 1s raised. In
most cases, man-in-the-middle (MITM) (including eaves-
dropping, snifling, identity spoofing, data tampering), sen-
sitive information disclosure, replay, compromised-key,
repudiation, and session hijacking attacks can happen in
cloud communications. Traditional security protocols (e.g.,
SSL/TLS/DTLS) are not always able to satisiy the growing
demand of security in cloud communications for various
reasons. These reasons are mainly related to maintainming
middlebox compatibility, backward compatibility for older
systems, downgrading due to unavailability of the selected
protocol version or cipher suites and some recent attacks

(e.g., BEAST, DROWN, CRIME, BREACH, WeakDH and
Logjam, SSLv3 fallback, POODLE, and ROBOT attacks).
These limitations will be elaborated 1n the following para-
graphs.

10

15

20

25

30

35

40

45

50

55

60

65

2

Existing traditional security protocols (e.g., SSL/TLS/
DTLS) are updated from time to time. However, may still be

vulnerabilities. For example, the latest version of TLS
(TLSv1.3) keeps a backdoor open for middlebox compat-
ibility. Ronen et al. [2019] showed that TLSv1.3 along with
other versions of fully patched TLS implementations are
prone to downgrade attack. In TLSv1.3, the first two
roundtrip handshake messages are merged into a single
roundtrip message to reduce the overall handshake roundtrip
time. This merged message includes the client key-exchange
information, supported cipher suites information and “Cli-
entHello” message. After receiving “ClientHello” message,
the server sends the server key-exchange information, server
certificate, and other information together with “Server-
Hello” message 1n encrypted form. However, all communi-
cations before this “ServerHello” message are performed 1n
unencrypted form. Therefore, an adversary may attempt
MI'TM and try to downgrade the protocol. Also, the merged
handshake message 1s the key 1n reducing roundtrip time in
TLSv1.3. If the adversary sends an empty “ClientHello” or
sends a modified “ClientHello™ for downgrading the proto-
col, this can still increase the roundtrip time.

UDP-based secure communications are different and
require extra features compared to regular UDP communi-
cations. Regular UDP communications can be used when
packet re-ordering and retransmaission features of TCP com-
munication are not desired or necessary. UDP 1s a stateless,
connectionless, and message-oriented transport protocol
where data 1s communicated 1n short message form, referred
to as datagram. It does not have packet acknowledgment,
re-transmission, and sequencing mechanism. Therefore, 1t
does not suller from re-transmission delays and head-of-line
blocking 1ssues. However, 1t 1s not suitable for transmitting
large amount of data. Large data must be divided into
multiple datagrams 1n the application layer and sent to the
other party. The problem 1n this approach 1s UDP does not
guarantee the delivery of datagrams and does not provide
any data merging feature. Any datagram can be dropped due
to network congestion, error in data transmission, etc. Also,
datagrams may arrive out-of-order at the recerving end.
Theretfore, securing UDP communications 1s always a chal-
lenging task due to 1ts unreliable, connectionless, low-
latency, and unordered datagram delivery characteristics.
These characteristics make 1t more diflicult to ensure the
security of transmitted datagrams. At the same time, they
make 1t a promising choice for faster connectivity and
real-time data transmission. Its low-latency feature cannot
be sacrificed while ensuring delivery and security of data-
grams.

SUMMARY

One aspect of the invention relates to a secure data-in-
transit cloud communications security protocol. The proto-
col uses symmetric block encryption, cryptographic hash,
public key cryptography, and ephemeral key exchange
mechanism to establish secure communications between
cloud entities.

Embodiments may use compact message structures to
support secure session establishment, reconnection, and data
transmission. Embodiments may include a packet acknowl-
edgment message designed only for UDP communications.
According to embodiments, the message structures enable
embodiments to achieve mimimal bandwidth consumption
and low memory usage, resulting in better performance than
prior approaches based on TLSv1.3 (the latest stable version
among the SSL successors) and DTLSv1.2 (the latest stable

US 11,936,691 B2

3

version of datagram TLS). The message structures also
enable embedding of other application layer communication
protocols.

According to embodiments, security of data-in-transit and
all associated secret keys 1s ensured. In some embodiments,
perfect forward secrecy (PFS) 1s maintained by performing
ephemeral key-exchange on each session and encrypting
cach session with a new secret key.

Embodiments may be immplemented for both TCP and
UDP-based communications, and do not depend on SSL/
TLS/DTLS implementations at any part of the communica-
tion channel.

Some embodiments ensure reliable UDP communications
and maintain low latency in datagram transmission using an
asynchronous message stream and re-transmission mecha-
nism.

Embodiments may handle message Iragmentation,
sequencing, and ordering internally in the protocol archi-
tecture for UDP communications, which makes large
amount of data transmission possible over UDP.

Another aspect of the mnvention relates to a method for
secure data-in-transit cloud communications, comprising:
providing a communication security protocol on two or
more cloud entities; using the communication security pro-
tocol to establish secure communications between the two or
more cloud entities; wherein the communication security
protocol 1mplements security elements using symmetric
block encryption, cryptographic hash, public key cryptog-
raphy, and ephemeral key-exchange in the communications
between the two or more cloud entities to provide a secure
communication channel; wherein security for both the data
and the cryptographic keys 1s provided.

In one embodiment, the communication security protocol
includes a central key server (CKS) mechanism; wherein the
two or more cloud entities are authenticated using the CKS
mechanism; wherein the CKS mechanism stores, revokes,
and distributes root public keys securely.

According to embodiments, the method may be appli-
cable to both Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP) communications.

In some embodiments, the method 1s implemented 1n a
soltware application layer and 1s integrated with application
protocols and server systems.

According to embodiments, the method may comprise
using one or more message structures selected from publish
(PUB), acknowledge (ACK), reconnect (RECON), request
(REQ), response (RES), expired (EXP), and error (ERR).
The message structures may facilitate one or more of secure
session establishment, reconnection, data transmission, and
error handling between cloud entities.

According to embodiments, the two or more cloud entities
may 1nclude a cloud user (CU) and a cloud server instance
(CI).

In some embodiments, establishing cloud communica-
tions comprises each cloud entity generating a pair of
temporary public-private keypairs; wherein one keypair
(RSA/ECC) 1s used to maintain authenticity and integrity of
a payloads, and the other keypair (DHE/ECDHE) 1s used for
ephemeral key-exchange.

In some embodiments, when a cloud user (CU) commu-
nicates with a cloud server instance (CI) for the first time, a
temporary encrypted session is mnitialized between the CU
and the CI; a pair of messages (PUB-ACK) are transmitted
between the CU and the CI and the CU and CI store each
other’s pair of public keys 1n the temporary session using a
hashed session key; the CU and the CI generate a common
secret key to proceed with a data transmission phase; the

10

15

20

25

30

35

40

45

50

55

60

65

4

hashed session key 1s updated after every successtiul trans-
action (encrypted request-response); wherein the CU
receives the updated session key hidden inside the encrypted
response; and when the session expires, the negotiated
public keys and the generated common secret key are
destroyed.

In some embodiments, aiter establishing a secure session,
the CU and the CI use the common secret key to perform
symmetric block encryption for maintaining confidentiality
of request and response payloads; wherein the temporary
keypair (RSA/ECC) 1s used to perform payload signing and
verification that ensures authenticity and integrity of the
payload throughout the session. The signing may include a
timestamp to protect against replay attacks.

In some embodiments, a cloud-focussed cryptographic
hash function 1s used to protect the payload integrity.

In some embodiments, when the CI sends an encrypted
response back to the CU successiully, the communication
channel 1s terminated; wherein the session remains valid for
reconnection until an expiration time 1s reached.

In some embodiments, atter the communication channel
1s terminated, 1f the CU again communicates to the CI and
sends a valid reconnection (RECON) packet with a last
received session key, the encrypted session i1s re-established
between the CU and the CI. In some embodiments, a session
key mapping of the CI 1s maintained; wherein, based on the
session key, the CI 1s reallocated to the CU, and both the CI
and the CU use the previous pair of public keys and the
stored common secret key.

In some embodiments, the communication 1s UDP;:
wherein messages are Iragmented i1nto messagegrams
(MESGs) before preparing datagram packets; wherein each
MESG has a transaction i1d, sequence number, message
count, index value, and data payload, and based on these
values, MESGs are merged back to form an original mes-
sage at the receiving end. In some embodiments, delivery of
MESGs 1s confirmed by sending an asynchronous packet-
acknowledgment (PACK) message 1mmediately after
receiving a messagegram, and the receiver sends an asyn-
chronous sequence-acknowledgment (SACK) message once
all the MESGs 1n a sequence are received.

Another aspect of the invention relates to a secure cloud
communication architecture, comprising: a communication
security protocol on two or more cloud entities; wherein the
communication security protocol establishes secure commu-
nications between the two or more cloud entities; wherein
the communication security protocol implements security
clements using symmetric block encryption, cryptographic
hash, public key cryptography, and ephemeral key-exchange
in the communications between the two or more cloud
entities to provide a secure communication channel; wherein
security for both the data and the cryptographic keys 1s
provided.

In some embodiments, the secure cloud communication
architecture includes a central key server (CKS) mechanism;
wherein the two or more cloud entities are authenticated
using the CKS mechanism; wherein the CKS mechanism
stores, revokes, and distributes root public keys securely.

In some embodiments, executing the communication
security protocol includes processing steps as described 1n
detail herein.

Another aspect of the invention relates to non-transitory
computer-readable medium having stored thereon instruc-
tions that, when executed by at least a CU and a CI of a cloud
computer network, cause the CU and the CI to establish
secure cloud communications between the CU and the CI;

US 11,936,691 B2

S

wherein establishing the secure cloud communications com-
prises the CU and the CI executing processing steps as
described 1n detail herein.

Another aspect of the invention relates to an apparatus
including a secure cloud communication architecture for
secure data-in-transit cloud communications, comprising:
two or more devices connected together over a communi-
cations network as two or more cloud entities; a communi-
cation security protocol stored as instructions on non-tran-
sitory computer-readable storage media and executed on
processors of the two or more cloud entities; wherein the
communication security protocol establishes secure commu-
nications between the two or more cloud entities; wherein
the communication security protocol implements security
clements using symmetric block encryption, cryptographic
hash, public key cryptography, and ephemeral key-exchange
in the commumnications between the two or more cloud
entities to provide a secure communication channel; wherein
security for both the data and the cryptographic keys 1s
provided.

In one embodiment, the communication security protocol
includes a central key server (CKS) mechanism; wherein the
two or more cloud entities are authenticated using the CKS
mechanism; wherein the CKS mechanism stores, revokes,
and distributes root public keys securely.

In various embodiments, the communication security
protocol includes processing steps as described i detail
herein.

Another aspect of the invention relates to a non-transitory
computer-readable medium having stored thereon instruc-
tions that, when executed by processors of two or more
cloud entities of a cloud computer network, establish secure
data-in-transit cloud communications between the cloud
entities;

wherein establishing the secure cloud communications
comprises the cloud entities executing processing steps that
provide a communication security protocol; wherein the
communication security protocol implements security ele-
ments using symmetric block encryption, cryptographic
hash, public key cryptography, and ephemeral key-exchange
in the communications between the two or more cloud
entities to provide a secure communication channel; wherein
security for both the data and the cryptographic keys 1s
provided.

In one embodiment of the non-transitory computer-read-
able medium, the instructions establish the communication
security protocol including a central key server (CKS)
mechanism; wherein the two or more cloud entities are
authenticated using the CKS mechanism; wherein the CKS
mechanism stores, revokes, and distributes root public keys
securely.

In various embodiments of the non-transitory computer-
readable medium, the instructions establish the communi-
cation security protocol including features as described in
detail herein.

BRIEF DESCRIPTION OF TH.

L1

DRAWINGS

For a better understanding of the invention, and to show
more clearly how it may be carried into effect, embodiments
will be described below, by way of example, with reference
to the accompanying drawings, wherein:

FIG. 1 1s a diagram showing different communication
phases between cloud entities of an architecture according to
one embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 2 1s a sequence diagram showing the flow of
execution 1n an architecture for TCP communications,

according to one embodiment.

FIG. 3 1s a sequence diagram showing the flow of
execution 1n an architecture for UDP communications,
according to one embodiment.

FIG. 4 1s a diagram showing an experimental environment
used to test architectures according to various embodiments.

FIGS. 5A and 5B are plots showing comparison of
average server-side execution time and client-side roundtrip
time, respectively, in an architecture according to an
embodiment for TCP communications (with/without ses-
sion-reconnection) with respect to TCP plaintext, TLSv1.3,
and TLSv1.2 communications, for diflerent payload sizes.

FIGS. 6A and 6B are plots showing comparison of
bandwidth overhead and average server-side memory usage,
respectively, 1 an architecture according to an embodiment
for TCP communications (with/without session-reconnec-
tion) with respect to TCP plaintext, TLSv1.3, and TLSv1.2
communications, for different payload sizes.

FIGS. 7TA and 7B are plots showing comparison of
average server-side execution time and client-side roundtrip
time, respectively, in an architecture according to an
embodiment for UDP communications (with/without ses-
sion-reconnection) with respect to UDP plaintext and
DTLSv1.2 commumnications, for different payload sizes.

FIGS. 8A and 8B are plots showing comparison of
bandwidth overhead and average server-side memory usage,
respectively, 1 an architecture according to an embodiment
for UDP communications (with/without session-reconnec-
tion) with respect to UDP plamtext and DTLSv1.2 commu-
nications, for different payload sizes.

DETAILED DESCRIPTION OF EMBODIMENTS

Described herein 1s a comprehensive secure cloud com-
munication architecture for both Transmission Control Pro-
tocol (TCP) and User Datagram Protocol (UDP)-based
communications. According to embodiments, the architec-
ture eflectively mitigates the threats of cloud communica-
tions (TCP and UDP-based) between cloud entities. The
embodiments ensure security for data-in-transit and authen-
ticity of cloud users (CUs) (1.e., any device that can com-
municate with a cloud service, such as, but not limited to, a
computer, tablet, smartphone, smart appliance, etc.) and
cloud service providers (CSPs). Rather than provide middle-
box or backward compatibility, the embodiments provide
communications between parties using supported cipher
suites recommended by the National Institute of Standards
and Technology (NIST), or the secure channel cannot be
established. This avoids pitfalls that may arise by allowing
downgrading of a protocol or by accepting a weaker cryp-
tographic algorithm to maintain middlebox compatibility.
Thus, “no backward compatibility” as used herein refers to
the fact that a new protocol 1s provided without revising any
older or prior protocols. Therefore, the embodiments avoid
the need to keep any backward compatibility. Further, 1t was
observed that previous protocols typically need a patch to fix
a vulnerability after their deployment. After that, the back-
ward compatibility 1s kept for the older version, which gives
an attacker an opportunity to bypass the new security
enhancements and keep attacking 1n the old way. In contrast,
by avoiding backward compatibility, the embodiments avoid
such weaknesses.

As described below, embodiments were tested by per-
forming security analyses based on the man-in-the-middle
(MITM) (including eavesdropping, snifling, identity spooi-

US 11,936,691 B2

7

ing, data tampering), sensitive information disclosure,
replay, compromised-key, repudiation, and session hijacking,
attacks. The results show that the embodiments efliciently
mitigate these attacks, and can protect cloud communication
channels with significantly less negotiation and bandwidth
overhead, reasonable memory usage, and faster connectivity
than traditional securnity protocols (e.g., TLSv1.3/
DTLSv1.2).

In general, embodiments provide one or more of the
following features:

A high-performance cloud focused security protocol that
ciliciently utilizes the strength and speed of symmetric block
encryption, cryptographic hash, public key cryptography,
and ephemeral key exchange mechanism.

Highly compact message structures to support secure
session establishment, reconnection, and data transmission,
and a packet acknowledgment message designed only for
UDP communications. These message structures help
achieve minimal bandwidth consumption and reasonable
memory usage, relative to TLSv1.3 (the latest stable version
among the SSL successors) and DTLSv1.2 (the latest stable
version of datagram TLS). The message structures also
enable embedding of other application layer communication
protocols.

Security of data-in-transit and all associated secret keys,
and maintenance of perfect forward secrecy (PFS) by per-
forming ephemeral key-exchange on each session and
encrypting the session with a new secret key.

Embodiments may be implemented for both TCP and
UDP-based communications, and they have no dependency
on the SSL/TLS/DTLS implementations at any part of the
communication channel.

Reliable UDP communications are ensured and low
latency 1n datagram transmission 1s maintained using an
asynchronous message stream and re-transmission mecha-
nism.

Handling of message fragmentation, sequencing, and
ordering internally 1n the architecture for UDP communica-
tions, which makes large amounts of data transmission
possible over UDP.

Design

Embodiments provide a cloud communication architec-
ture that focuses on the security of communication (TCP/
UDP) channels and associated data-in-transit 1in cloud com-
munications. They use a protocol for establishing the
communications that guarantees the authenticity of cloud
entities by using a central key server (CKS) mechanism.
Embodiments rely on a client-server model; however, 1t 1s
different than TLS. TLS does not have central key server 1n
its client-server model. In TLS, client authentication i1s
optional and server identity 1s verified against installed/
trusted certificates. In contrast, embodiments always ensure
authenticity of cloud users and cloud servers using a CKS
mechanism.

The CKS stores, revokes, and distributes root public keys
securely. It 1s implemented for both TCP and UDP commu-
nications. Embodiments efliciently combine and utilize the
strength and speed of symmetric block encryption, crypto-
graphic hash, public key cryptography, and ephemeral key-
exchange mechamism. Symmetric encryption provides con-
fidentiality of the data, cryptographic hash protects integrity
of the data, and public key cryptography ensures authentic-
ity and non-repudiation. These four security elements are
embedded into the communication (TCP/UDP) channel 1n
such a way so that communication between cloud entities 1s

10

15

20

25

30

35

40

45

50

55

60

65

8

secured from the first message until the end ol communi-
cation, and security 1s ensured for both the data and the
cryptographic keys.

According to embodiments, long-term keys are not used.
Each session 1s encrypted with a new secret key thus
ensuring perfect forward secrecy (PFS). Embodiments may
be 1implemented for both TCP and UDP communications,
and work in the application layer and fit between the
transport layer and upper layer applications. Thus, they can
be easily integrated with any application protocol and server
system. The following highly compact message structures
were developed and combinations thereof may be used: 1)
publish (PUB), 11) acknowledge (ACK), 111) reconnect (RE-
CON), 1v) request (REQ), v) response (RES), vi) expired
(EXP), vi1) error (ERR), viil) messagegram (MESG), 1x)
packet-acknowledgment (PACK), and X) sequence-ac-
knowledgment (SACK). These message structures make the
embodiments more eflicient 1n terms of performance, band-
width consumption, memory usage, and integration with
existing protocols.

The first seven messages (1-vi1) facilitate secure session
establishment, reconnection, data transmission, and error
handling between cloud entities for both TCP and UDP
communications. In addition to these messages, MESG,
PACK and SACK messages are specially designed for UDP
communications. The MESG message enables message
fragmentation and sequencing in the application layer belore
preparing datagram packets for transport layer. The PACK
and SACK messages enable delivery acknowledgment to the
sender of the MESG message. At the receiving end, all
MESG messages are ordered and merged back based on
their sequence number to construct the original message.
Also, an asynchronous message re-transmission mechanism
may be provided for UDP communications.

In one embodiment, the architecture includes six major
communication phases for both TCP and UDP communica-
tions such as registration, imitialization, session establish-
ment, data transmission, termination, and reconnection.
Along with those, embodiments may include three addi-
tional communication phases designed only for UDP com-
munications, namely, message fragmentation and merging,
packet or sequence acknowledgment, and message re-trans-
mission.

According to an embodiment for both TCP and UDP
communications, the cloud entities first register their root
public keys to the central key server (CKS) 1n the registra-
tion phase. After that, when any cloud user wants to com-
municate to the cloud server, temporary cryptographic key-
pairs and hash functions are initialized in the mmitialization
phase to establish an encrypted session. Then, both the
entities exchange their temporary public keys with each
other, signed by their respective root private key. The
key-exchange of temporary public keys i1s secured by
hybrid-crypto mechanism [Cramer et al., 2004] using AES-
GCM for data encryption and RSA/ECC for key encryption
during the session establishment phase.

After that, both enfities generate a common symmetric
encryption key using ephemeral key-exchange. Then, they
start transmitting encrypted signed data to each other 1n the
data transmission phase. After sending the response payload
successiully to the cloud user, cloud server terminates the
communication channel in the termination phase. At this
point, the server keeps the encrypted session information
until the session expires. Within that period, the cloud user
can send a reconnection request and re-establish the
encrypted session for further data transmission in the recon-
nection phase.

US 11,936,691 B2

9

In embodiments for UDP communications, message frag-
mentation and merging, packet or sequence acknowledg-
ment, and message re-transmission are such communication
phases that are highly involved with all the above six major
phases. In message fragmentation and merging phase, all
messages constructed in the above six major phases are
fragmented into smaller messages (messagegrams) before
preparing the datagram packets. At the receiving end, these
messagegrams (MESGs) are ordered and merged back to
form the original message. After sending these MESGs, the
system waits for the delivery confirmation during the packet
or sequence acknowledgment phase. When this wait time 1s
over, the system sends the same MESGs again and wait for
the confirmation. This 1s repeated until a confirmation mes-
sage (PACK or SACK) 1s received, or until 1t 1s tried to a set
maximum number of times. This phase 1s called the message
re-transmission phase.

FIG. 1 shows major phases of the communications used
by an architecture, according to one embodiment. These are
described 1n detail 1n the following paragraphs.

Registration Phase. All cloud entities must register their
root public keys to the central key server (CKS) prior to any

communication. The CKS public keys must also be installed
in the cloud entity systems, to ensure mntegrity and authen-
ticity of the data communicated between the CKS and the
cloud entities. The CKS 1itself and all communications (key
registration, revocation, and distribution) with 1t are
assumed to be secured at this point.

Initialization Phase. In case of cloud server instance (CI),
this phase occurs at the very beginning when the CI 1s
mitiated. However, for the cloud user (CU), 1t occurs when
a new cloud TCP connection or cloud UDP connection is
created to commence communication with the cloud front-
end (CFE) server. During this phase, each cloud enftity
generates a pair of temporary public-private keypairs. One
keypair (RSA/ECC) 1s for maintaining the authenticity and
integrity of the payloads. The other keypair (DHE/ECDHE)
1s for the ephemeral key-exchange. Fach cloud entity ini-
tializes cryptographic hash functions according to the design
specification. Additionally, for UDP communications, each
cloud enfity also imitializes re-transmission mechanism.

Session Establishment Phase. When a CU tries to com-
municate to the CI for the first time, a temporary encrypted
session 1s 1nitialized between the CU and the CI. During this
time, a pair of messages (PUB-ACK) are transmitted
between them. Both parties store the other party’s pair of
public keys 1n that temporary session protected by a 64-byte
hashed session key. Then, they generate a common secret
key to proceed with the data transmission phase. The
64-byte hashed session key 1s updated after every successiul
transaction (request-response). The CU always receives the
updated session key hidden inside the encrypted response.
When this session expires, all the negotiated public keys and
the generated common secret key are destroyed automati-
cally.

Data Transmission Phase. After establishing the secure
session, both parties use the common secret key to perform
symmetric block encryption for maintaining the confidenti-
ality of the request and response payloads. The negotiated
temporary keypair (RSA/ECC) 1s used to perform payload
signing and verification that ensures authenticity and integ-
rity of the payload throughout the session. Every signing
operation performed 1n this architecture imvolves timestamp
to protect against replay attacks. During this phase, a cloud
focussed cryptographic hash function (Blake2b [BLAKE?2,

2017]) 1s used to protect the data integrity.

10

15

20

25

30

35

40

45

50

55

60

65

10

Termination Phase. In this phase, when the CI sends
encrypted response back to the CU successtully, the com-
munication channel 1s terminated. The existing session
remains valid for reconnection until 1t 1s expired.

Reconnection Phase. This phase 1s not explicitly shown 1n
FIG. 1. It has implicit activity 1n this architecture. After the
termination phase, if the CU again commumnicates to the
server and sends a valid reconnection (RECON) packet with
the last received session key, the encrypted session 1s
re-established between the CU and the CI. The CFE main-
tains a session key mapping of the Cls. Based on the session
key, 1t reallocates the appropriate CI to the CU. Both parties
use the previously negotiated pair of public keys and the
stored common secret key. Therelore, re-keying the block
cipher during the session 1s not needed.

Message Fragmentation & Merging Phase. This 1s a UDP
communication only phase. It 1s highly mmvolved with all
major communication phases only when performing UDP
communications. Therefore, it 1s not possible to explicitly
show this phase i FIG. 1. In this phase, all messages
constructed in the major communication phases are frag-
mented into messagegrams (MESGs) just before preparing
the datagram packets. Each MESG has a transaction 1d,
sequence number, message count, index value, and data
payload. Based on these values, MESGs are merged back to
form the original message at the receiving end.

Packet or Sequence Acknowledgment Phase. Data 1s
communicated 1n UDP using datagram packets. A datagram
packet 1s not guaranteed to reach its destination. It may get
lost due to network congestion or any data transmission
error. Therefore, in UDP commumnications, delivery of all
messagegrams (MESGs) are confirmed by sending an asyn-
chronous packet-acknowledgment (PACK) message imme-
diately after recerving a messagegram. The recerver sends an
asynchronous sequence-acknowledgment (SACK) message
once all the MESGs 1n a sequence are received. This 1s a
UDP communication only phase and 1s not explicitly shown
in FIG. 1.

Re-transmission Phase. This phase 1s not explicitly shown
in FIG. 1. When a messagegram 1s sent, the system starts
waiting for the corresponding packet-acknowledgment
(PACK) message. If the wait time exceeds re-transmission
delay, 1t sends the same messagegram again and starts
waiting again. This re-transmission mechanism works asyn-
chronously. Therefore, embodiments do not suffer from
head-of-line blocking 1ssue. This wait-send-wait mechanism
1s repeated until the PACK message 1s received or tried to a
maximum number of times. It 1s an UDP communication
only phase and involved with all messages sent and received
in UDP communications using such architecture.

Flow of Execution

This section explains how embodiments establish a secure

encrypted channel for TCP and UDP communications and
internal steps.
1. TCP Communication with reference to the sequence
diagram shown in FIG. 2, wherein steps described below
refer to numbered 1tems 1n FIG. 2 (e.g., Step-1 refers to *“1;
initialize cloud connection™; Step-2 refers to “2: request
cloud server’s root public key” and *2.1: response cloud
server’s root public key™; etc.).

Step-1. The cloud user (CU) mitializes a cloud connec-
tion. A pair of temporary public-private keypair 1s generated
and the cryptographic hash functions are initialized.

Step-2. After mitializing the connection, the cloud user
tetches the cloud server’s root public key which 1s signed by
the central key server (CKS) that ensures authenticity and
non-repudiation for both parties.

US 11,936,691 B2

11

Step-3. The cloud user (CU) connects to the cloud front-
end (CFE) server and a cloud istance (CI) 1s allocated for
this connection.

Step-4. The CU signs 1ts temporary public keys with own
root private key to protect authenticity and integrity of the
“publish” payload (PUB). After that, the signed “publish”
payload 1s encrypted using symmetric block encryption to
maintain the confidentiality of the payload in a hybrid-
crypto mechanism.

Step-5. The CU and CI utilize the “publish” and
“acknowledge” packets (PUB-ACK) to share all temporarily
generated public keys to each other. The CU sends the
encrypted signed “publish” payload to the CI. After decrypt-
ing the received packet, the CI requests the cloud user’s root
public key from the central key server (CKS). Then, the CI
validates the authenticity and integrity of the received “pub-
lish” payload. After validation, the CI sends the encrypted
signed “acknowledge” payload (ACK) to the CU. This
approach protects the session establishment phase from
man-in-the-middle (MITM) attacks.

Step-6. When the CU receives the encrypted signed
“acknowledge” packet (ACK), 1t also validates the authen-
ticity and integrity of the recerved payload. The cloud user
stores cloud server’s temporary public keys 1n the session.
After finishing session establishment phase, the common
secret key 1s generated at both ends using the ephemeral
key-exchange mechanism (DHE or ECDHE). A secure
encrypted communication channel 1s established without
using any pre-shared key or transmitting any part of the
secret key. This generated secret key 1s used to perform
symmetric block encryption on the signed cloud payload.

Step-7. In this step, both parties perform data transmission
(request-response) which 1s first signed and then encrypted
to protect confidentiality, integrity, and authenticity of the
data. After sending the response, the cloud instance (CI)
terminates the connection with the cloud user (CU).

Step-8. When the CU again wants to accomplish any more
data connectivity and 1t has the valid session information, 1t
can send a reconnection packet (RECON) to the cloud
frontend (CFE) server. If any associated session 1s found, the
secure channel 1s re-established between the CU and the CI.
They do not need to perform the session establishment steps
again. Otherwise, the CU must go through Step-4 to Step-6
again.

Step-9. Once the secure session 1s re-established, both the

CU and the CI can perform data transmission again. After
the response 1s sent back to the CU, the CI closes the
connection.
2. UDP Communication with reference to the sequence
diagram shown in FIG. 3, wherein steps described below
refer to numbered items 1n FIG. 3 (e.g., Step-1 refers to “1:
initialize cloud datagram”; Step-2 refers to “2: request cloud
server’s root public key {wait for pack message, then
resend}”, “2.1: send pack message for the request”, “2.2:
response cloud server’s root public key {wait for pack
message, then resend”, and “2.3: send pack message for the
response’’; efc.).

Compared to the TCP embodiment, differences include
the PACK and SACK messages getting delivered before
moving to the next steps and due to the connectionless
nature ol UDP, the cloud user does not need to have any
connection with the CKS and the cloud server before
sending any message.

Step-1. The cloud user (CU) initializes a cloud datagram.
A cloud datagram provides message fragmentation and
sequencing for the outgoing messages. It enables ordering
and merging of the recerved fragmented MESG messages. It

10

15

20

25

30

35

40

45

50

55

60

65

12

also deals with PACK messages and uses a retransmission
mechanism to ensure datagram delivery. A pair of temporary
public-private keypair 1s generated. The retransmission
mechanism and cryptographic hash functions are initialized.

Step-2. After initialization, the CU sends a request for the
cloud server’s root public key to the central key server
(CKS). After a specific duration, the same message 1s sent
again 1I no PACK message 1s recetved. When the CU
receives a PACK message for that specific message, it
removes that message from the re-transmission queue.
When the CU receives cloud server’s root public key from
the CKS, 1t also sends back a PACK message as the delivery
acknowledgment to the CKS. The response message 1s
signed by the CKS that ensures authenticity and non-
repudiation for both parties.

Step-3. The CU signs 1ts temporary public keys with own
root private key to protect authenticity and integrity of the
“publish” payload (PUB). After that, the signed “publish”

payload 1s encrypted using symmetric block encryption to
maintain the confidentiality of the payload in a hybrid-
crypto mechanism.

Step-4. The CU and CI utilize the “publish” and
“acknowledge” packets (PUB-ACK) to share all temporarily
generated public keys to each other. The CU sends the
encrypted signed “publish” payload to the cloud front-end
(CFE) server and a cloud mstance (CI) 1s allocated for this
communication. Then, CFE forwards the received message
to the CI. After decrypting the received message, the CI
requests the cloud user’s root public key from the central key
server (CKS). Then, the CI validates the authenticity and
integrity of the recerved “publish™ payload. After validation,
the CI sends the encrypted signed “acknowledge” payload
(ACK) to the CU. This approach protects the session estab-
lishment phase from man-in-the-middle (MITM) attacks. All
these messages are Iragmented into messagegrams before
preparing datagram packets. They also require delivery
confirmation by sending an asynchronous PACK message
for each of them.

Step-5. When the CU receives the message with the
encrypted signed “acknowledge” message (ACK), 1t also
validates the authenticity and integrity of the received pay-
load. The cloud user stores cloud server’s temporary public
keys 1n the session. After finishing session establishment
phase, the common secret key 1s generated at both ends
using the ephemeral key-exchange mechanism (DHE or
ECDHE). A secure connectionless encrypted communica-
tion channel 1s established without using any pre-shared key
or transmitting any part of the secret key. This generated
secret key 1s used to perform symmetric block encryption on
the signed cloud payload.

Step-6. In this step, both parties perform data transmission
(request-response) which 1s first signed and then encrypted
to protect confidentiality, integrity, and authenticity of the
data. After sending the response and receiving the confir-
mation PACK message, the cloud mstance (CI) closes the
datagram communication channel with the cloud user (CU).

Step-7. When the CU again wants to accomplish any more
UDP communication and it has the valid session informa-
tion, 1t can send a reconnection message (RECON) to the
CFE server. If any associated session 1s found, the secure
datagram channel 1s re-established between the CU and the
CI. They do not need to perform the session establishment
steps again. Otherwise, the CU must go through Step-3 to
Step-5 again.

Step-8. Once the secure session 1s re-established, both the
CU and the CI can do data transmission again. After the

US 11,936,691 B2

13

response 15 sent back to the CU and confirmed with a PACK
message, the CI closes the datagram channel.

The mmvention will be further described by way of the
following non-limiting Working Example.

WORKING EXAMPLE

An embodiment was developed using Java and Java
Cryptography Architecture (JCA). This embodiment has no
dependency on any other platforms, tools and libranies, and,
therelfore, 1t can be deployed 1n any platform or environment
where Java runtime environment (JRE) and appropriate Java

cryptographic implementation (Java8 or above compliant)
are available. To compare with TLSv1.3 and DTLSv1.2, all

experiments (ICP and UDP) were run 1n Javall.0.1 (LTS)
which includes implementations of the TLSv1.3 [Rescorla,
2018] and DTLSv1.2 [Rescorla et al., 2012] specifications.
Although Java provides TLS server-client transport imple-
mentation (SSLServerSocket and SSLSocket) for TCP com-
munication, 1t does not provide any DTLS transport imple-
mentation for UDP communication. Due to lack of any
standard 1mplementation of DTLSv1.2, a DTLS server
transport and a DTLS client transport over DatagramSocket
were developed using Java Secure Socket Extension (JSSE)
Retference Guide and test implementation hosted on Code
Review for Java Development Kit (JDK). A high-perfor-
mance cloud focussed security protocol was designed and
implemented with ten highly compact message structures.
Any types of payload data (e.g., HTTP, XML, JSON and
Binary) can be sent and received using this protocol with
mimmal changes in the existing infrastructures and appli-
cations.

The embodiment uses public-key cryptography for sign-
ing the payloads and ephemeral Diflie-Hellman (at least
2048-b1t) using MODP groups [Kivinen et al., 2003] as the
key-exchange mechanism. A latest cryptographic hashing

algorithm Blake2b [BLAKE2, 2017/] 1s used for maintaining
the integrity of the data-in-transit. It 1s faster than SHA-

families and as secure as SHA-3 at mimmimum, which makes
it suitable for cloud communications and large volume of
data hashing. SHA-512 1s used to generate temporary ses-
s1on keys from the session properties and the client supplied
information. AES-256 with Galois/Counter mode (GCM) 1s
used as the symmetric block encryption for ensuring confi-
dentiality throughout all the communication phases. The
system operates over 256-bit encrypted channel which 1s the
approved encryption standard for top secret information by
both the National Institute of Standards and Technology
(NIST) and the National Security Agency (NSA) of the
USA.

The architecture 1s configurable to use any of the sup-
ported (RSA/ECC) public-key cryptographic algorithms for
payload signing and verification. However, the minimum
key size recommended by the NIST 1s 2048-bit for RSA and
224-bit for ECC [Barker et al., 2015b]. This implementation
strictly follows these recommendations made by the NIST at
all steps [Barker et al., 2015a, 2015b]. AES (128/192/256-
bit) encryption 1s used as the supported symmetric block
encryption. AES-256 1s the highest level (military-grade) of
symmetric encryption available at present. It 1s also the
default choice for confidentiality according to the embodi-
ment. However, embodiments may be configured to use any
of the other key sizes or encryption algorithms 11 this level
of security 1s not required.

1. Experimental Environment

FIG. 4 1s a diagram showing an exemplary configuration,
including cloud users (CUs) 41a, 415, . . . 41X, a central key

10

15

20

25

30

35

40

45

50

55

60

65

14

server (CKS) 43, and a cloud front end (CFE) 45 connected
via the internet, and cloud instances (Cls) 47a, 47b,
47c, . . . 47x connected to the CFE. As 1llustrated 1n FIG. 4,
Cls are configured according to the requirement. Each CI
has a processor (e.g., a hyperthreaded vCPU core (4.0 GHz
with turbo boost)), memory (e.g., 4 GB of RAM, 20 GB of
local SSD storage). The processor may run software to
reduce interference from other processes (e.g., CentOS 7
(minimal version)). The cloud instances are controlled by
the CFE server. The CFE server has a built-in basic load
balancer that supports both TCP and UDP communications
which works 1 a simplified round-robin fashion. It 1s
responsible for distributing all incoming tratlic (TCP and
UDP) to the cloud instances equally by assigning the same
weight to each CI unless the imncoming traflic 1s a reconnec-
tion request with valid session information.

The CI records execution time for session establishment
(1f any), request and response at the server-side for plaintext,
TLSv1.3, DTLSv1.2 and the embodiment with and without
session-reconnection mechanism. However, a CU monitors
roundtrip time information at the client-side for further
analysis. All CUs run 1n an iterative fashion and send request
with a specific size (ranging from 100B to 1 MB) of data
every time. However, due to the limitation of datagram
payload size, UDP plaintext and DTLSv1.2 communications
cannot be evaluated over 65,507 bytes of sample data as data
more than this size needs to be divided into multiple
datagrams and UDP neither ensures delivery nor order of the
datagrams at the recerving end. Apart from these commu-
nications, all other communications are evaluated up to 1
MB of sample data. A separate secure public key registration
and distribution server runs as a central key server (CKS) for
managing root public keys. In CKS, all cloud entities have
their root public keys registered against their unique 1den-
tifier. The CFE server and the CUs have their public keys
registered against their IP address and assigned random
string tokens, respectively. All experiments were performed
in an 1terative fashion (1000 times). Each request-response
belongs to a temporary encrypted session which has a
hashed session key generated from the session properties
and the client supplied 1nformation.

The reason for comparing with TLSv1.3 and DTLSv1 .2 1s
that TLSv1.3 1s the latest stable version among the SSL
(Secure Sockets Layer) successors for TCP communications
and DTLSv1.2 1s the latest stable version of datagram TLS
for UDP communications. TLSv1.3 is purported to be more
secure than TLSv1.2, where TLSv1.2 1s proved to have a

steady and secure implementation than SSL, TLSv1.0 and
TLSv1.1. SSLv3 and TLSv1.0 are already declared obsolete
and some vulnerabilities are reported for TLSv1.1. Due to
the severe data breaches caused by recent attacks, TLSv1.3
1s now recommended for secure TCP communications over
the internet. If TLSv1.3 1s not available, at least TLSv1.2
should be used for secure TCP communications. On the
other hand, DTLSv1.2 1s based on the old TLSv1.2 speci-
fication [Rescorla et al., 2008]. Betore TLS, there was no
secure communication protocol for UDP at all. The first
version ol DTLS (v1.0) specification 1s dernived from
TLSv1.1 specification. When vulnerabilities are reported for
TLSv1.1, the next version of datagram TLS 1s defined as a
series of deltas from TLSv1.2 specification. To harmonize
version numbers with TLS, v1.1 for DTLS 1s skipped.
Theretore, DTLSv1.2 1s the only option for secure UDP
communications at present.

2. Results and Analysis

Experimental results were analyzed with respect to secu-
rity and performance. All prominent cryptographic technolo-

US 11,936,691 B2

15

gies (public key cryptography, digital signature and verifi-
cation, symmetric block encryption and cryptographic hash)
were evaluated iteratively for diflerent payload sizes (100B-
20 MB) to select the optimal choice for implementing a
high-performance cloud focused security protocol embodi-
ment that efliciently utilizes these technologies with respect
to their strength and speed. The following section presents a
thorough security analysis against diflerent types of attacks.
After that, the performance was evaluated for both the TCP
and UDP communications in terms of execufion time on
server-side, roundtrip time on client-side, bandwidth over-
head with respect to plaintext, memory usage at server-side
and 1impact of different payload sizes in the above mentioned
sCenarios.

2.1 Security Analysis

A thorough analysis was conducted to show the level of
defence provided by the embodiment for both TCP and UDP

communications with respect to attacks including Man-1in-
the-Middle (MITM) (including eavesdropping, snitling,
identity spoofing, data tampering), sensitive information
disclosure, replay, forward secrecy (compromised-key),
repudiation and session hijacking.

1) MITM Attack. This attack 1s a combination of different
security attacks like eavesdropping, snifling, identity spooi-
ing, and data tampering. In MITM attacks, an adversary can
actively eavesdrop to a private communication between two
legitimate users or even initiate separate communications to
cach of the users to appear as a legitimate entity to both
parties (1dentity spoofing). Then, the attacker captures all the
packets (smiling) and forwards them to the other party in
such a way so that the victims are forced to believe that they
are communicating directly to each other over a private
communication. In the latter approach, the attacker has full
control over the communication and can easily steal valu-
able information or even manipulate the packets (data tam-
pering) sent to the victims. In order to analyze the embodi-
ment against these attacks, two types of communications
performed from any enftity were mvestigated. One type of
communication 1s from cloud user (CU) or cloud instance
(CI) to central key server (CKS) and the other type 1s
between CU and CI as discussed below.

a) CU/CI to CKS. When any CU/CI requests any public
key from CKS, CKS responds with the requested public key
payload signed by 1ts own root private key. The root public
key of CKS 1s mstalled to all entity systems during setup
time. Thus, the receiver can verily the authenticity and
integrity of the recerved public key payload from CKS
which prevents 1dentity spoofing and data tampering. Since
the payload 1s a public key and 1t 1s meant to be shared
publicly, confidentiality of this type of payload i1s not
required. Therefore, even if any adversary 1s eavesdropping,
or snifling in this communication, the adversary cannot
tamper with the payload. Hence, MITM attacks are not
possible for this type of communications.

b) Between CU and CI. All communications between CU
and CI are securely protected (signed and encrypted). Each
message 1s signed by their root or temporary private key
based on the communication phase. Thus, the other entity
can always verily the authenticity of the sender by using
sender’s root or temporary public key. Signing each message
ensures the authenticity and integrity of the received payload
in all phases which prevents the 1dentity spoofing and data
tampering attacks on DHE key-exchange and request-re-
sponse payloads. Finally, due to AES-GCM encryption, the
adversary can never see the payloads transmitted through
this channel at any time which eliminates the scope of

10

15

20

25

30

35

40

45

50

55

60

65

16

cavesdropping or snifling, thus ensuring MITM attacks
cannot be successiul on this type of communications.

11) Sensitive Information Disclosure. This attack often
happens where the payload 1s transmitted in plaintext or the
encryption technique used 1s prone to cryptanalysis attacks.
In this scenario, the adversary can capture all the packets and
steal transmitted sensitive information without the knowl-
edge of the user. However, 1n this embodiment, all commu-
nications between CU and CI are performed using AES-
GCM encrypted channel (e.g., at least 128-bit) from the
transmission of first packet. Thus, no sensitive information
can be accessed without establishing a proper communica-
tion channel.

111) Replay Attack. This 1s one of the most common attacks
which helps the attacker to intercept valid payloads and
re-transmit captured payloads repeatedly to perform mali-
cious or fraudulent activities. In this embodiment the archi-
tecture was designed 1n a manner so that this kind of attack
cannot be successiul. First, all payload signing involves a
timestamp to create randommness in the output. Then, a
temporary session key 1s updated alter every successiul
transaction (request-response) during the data transmission
phase. This timestamp-based signing and temporary session
key enable prevention of replay attacks. Thus, at no point
can an adversary gaimn any benefit from repeating any
previously captured data.

1v) Forward Secrecy. In cryptography, forward secrecy 1s
a feature that ensures compromising any secret key does not
compromise the security of the past payloads communicated
between the entities. In this embodiment, perfect forward
secrecy (PFS) 1s maintained through ephemeral Diflie-
Hellman key-exchange with at least 2048-bit key size on
cach new session and by generating all associated crypto-
graphic keys per session as well. Therefore, even if one
session 1s compromised, other past and future sessions
remain secure.

v) Repudiation. This means denying the responsibility of
any actions performed. In this embodiment, all entities must
be registered to CKS prior to any communication. The
session establishment phase 1s performed using their regis-
tered root public-private keypair and both entities (CU and
CI) negotiate temporary keypairs for this session. Later on,
all communications are authenticated using these temporary
public-private keypairs. This ensures authenticity and non-
repudiation of the entities throughout the communications.
Thus, this attack 1s not feasible by any means over the
communication channels.

v1) Session Hiyjacking. In session-based communications,
attackers often try to capture session related information.
More specifically, they try to look up session keys or nonce
information. In this embodiment, temporary hashed session
keys generated based on the session properties and client
supplied information are used. This session key enables
cloud entities to re-establish their previous encrypted session
iI not expired already. Each session key 1s updated after
every successiul transaction (request-response) and most
importantly, all transmitted messages are AES-GCM
encrypted.

vil) Some Recent Attacks. Some hazardous attacks such
as DROWN, CRIME, BREACH, BEAST, WeakDH and
Logjam, SSLv3 fallback, POODLE and ROBOT attacks
happen on traditional security protocols (e.g., SSL/TLS/
DTLS) that threaten the existing cloud infrastructures and
their expansion towards fog or edge computing, o1, con-
nected vehicles, smart city, etc. Some of the attacks are
performed by exploiting weaknesses 1n the security tech-
nologies whereas others are caused by misconfiguration of

US 11,936,691 B2

17

the system. Due to the advancement of computing resources,
security measures which were deemed secure in the past
become vulnerable to brute force attacks, adaptive chosen
plaintext attacks, compression ratio leak, discrete logarithm,
or other cryptanalysis attack techniques. Embodiments may
follow the NIST recommendations in choosing suitable
cryptographic algorithms and their mimmimum supported key
s1zes, which enables them to prevent such attacks. In some

embodiments, Galois/Counter mode (GCM) 1s used as the
mode of operation for AES with new mnitialization vector
(IV) values generated randomly for each request. Compres-
sion techniques are not used. Recommended key sizes
according to NIST [Barker et al., 2015a, 2015b] may be used
for the minimum level of security and also MODP [Kivinen
et al., 2003] groups (group 1d 14 or above) may be used to
perform ephemeral key-exchange.
2.2 Performance Analysis

A performance evaluation of the implemented architec-
ture for both the TCP and UDP communications in terms of
average execution time on the server-side, roundtrip time on
the client-side, bandwidth overhead with respect to plain-
text, TLSv1.3, TLSv1.2, and DTLSv1.2 communications,
and memory usage at the server-side are presented herein.
Table 1 presents the specification of the experimental envi-
ronment used for evaluating performance, bandwidth over-
head, and memory usage.

TABLE 1

Cloud Instance Specification

Parameters Values

vCPUs: 1 (HyperThreaded), RAM: 4 GB
Regular (Non-Preemptible)

4.0 GHz with Turbo Boost (8M Cache)
CentOS 7 (Minimal) with 20 GB Storage
Round Robin

100 B, 500 B, 1 KB, 500 KB, 1 MB

100 B, 500 B, 1 KB, 10 KB, 20 KB, 30 KB,

Virtual CPU(s), Memﬂryl
VM Classl

Processing Unitl
Cloud OS & Stmrage'

CFE Load Balancerl
Sample Data for TCPl

Sample Data for UDP
40 KB, 50 KB, 64 KB, 500 KB, 1 MB

Number of Iteration 1000

2.2.1 TCP Communication

FIG. 5A shows the average execution time 1n milliseconds
for one of the mvestigated TCP cloud 1nstances. Shown are
the average execution times in diflerent TCP cloud instances
for plaintext, TLSv1.3, TLSv1.2, and the embodiment with-
out session-reconnection (No Session) and with session-
reconnection (With Session), for different payload sizes
(100B, 3500B, 1 KB, 3500 KB, and 1 MB).

It can be seen that with a session-reconnection mecha-
nism, the embodiment outperforms TLSv1.3 significantly
tor all payload sizes and lies very close to the plaintext curve
and behaves the same 1n all TCP cloud server instances.
With session-reconnection performance 1s about 90% faster
than the TLSv1.3 communication. The embodiment per-
forms better with session-reconnection and without session-
reconnection with respect to TLSv1.2.

On the client-side, the average roundtrip time (1n milli-
seconds) was measured by taking the sum of observed
durations for connection creation, session establishment (1f
present), and request-response time for different payload
s1zes. F1G. 5B presents the average roundtrip time for one of
the 1nvestigated TCP client instances under plaintext,
TLSv1.3, TLSv1.2, and the embodiment without session-

10

15

20

25

30

35

40

45

50

55

60

65

18

reconnection (No Session) and with session-reconnection
(With Session) for different payload sizes (100B, 500B, 1

KB, 500 KB, and 1 MB).

As observed from the performance curves of client-side
average roundtrip time, the embodiment with session-recon-
nection mechanism performs very close to that of the
plaintext and shows promising performance against
TLSv1.3. The performance without session-reconnection
mechanism deteriorates 1n terms of average roundtrip time at
the client-side. However, 11 1t 1s used with the session-
reconnection mechanism, it 1s able to provide faster com-
munication with a higher level of security.

The bandwidth overhead graph shown i FIG. 6A 1s
calculated with respect to the bandwidth consumption of the
TCP plaimntext communication. It 1s readily noticed that the
bandwidth overhead for 100 bytes of payload size 1s more
than 280% for TLSv1.3 and over 380% more for the
embodiment without session-reconnection mechanism (No
Session). However, when the embodiment 1s used with
session-reconnection mechanism (With Session), 1t shows
only 80% overhead with respect to plaintext communication
and provides 54% gain over TLSv1.3 communication.

For 1 KB of payload size, the with session-reconnection
mechanism provides 32% gain over the bandwidth con-
sumption ol TLSv1.3. FIG. 6A shows a decreasing trend
with increasing payload sizes and for 500 KB payload size
the overhead becomes nearly 1% for all types of TCP
communications with respect to plaintext. Therefore, 1n case
of large volume of data, the overhead 1s negligible. How-
ever, the embodiment with session-reconnection performs
better 1n smaller payload sizes as well as with the increasing
payload sizes.

FIG. 6B shows the server-side memory usage (in MB) of
an embodiment 1 one of the mvestigated TCP cloud
instances with respect to plaintext, TLSv1.3 and TLSv1.2
communications. From FIG. 6B 1t 1s readily noticed that
embodiments with and without session-reconnection mecha-
nism show a reasonable amount of memory usage for
different payload sizes which lies very close to the memory
usage of TLSv1.3 and TLSv1.2 communications. The usage
pattern shows similar behavior 1n all the mnvestigated cloud

instances and the memory usage increases proportionally
with the increase in payload size.
2.2.2 UDP Communication

UDP communication 1s faster than TCP communication
by nature. The average execution time at server-side and
average roundtrip time at client-side, shown in FIGS. 7A and
7B, respectively, signity how fast all the UDP communica-
tions performed compared with therr TCP counterparts
shown 1n FIGS. 5A and 3B. The average execution times 1n
milliseconds 1n different UDP cloud 1nstances for plaintext,
DTLSv1.2, and embodiments without session-reconnection
(No Session) and with session-reconnection (With Session)
were mvestigated for different payload sizes (100B, 500B, 1
KB, 10 KB, 20 KB, 30 KB, 40 KB, 50 KB, 64 KB, 500 KB,
and 1 MB). FIG. 7A presents the average execution time for
one of the investigated UDP cloud instances. However, UDP
plaintext and DTLSv1.2 cannot be evaluated over 64 KB of
payload size due to the datagram payload size limitation. On
the other hand, the embodiment implemented for UDP
communication overcomes that limitation and allows UDP
peers to send and receive any size of payload data. The
embodiment with session-reconnection mechanism outper-
forms DTLSv1.2 significantly for all payload sizes and lies
very close to the plaintext curve and behaves the same 1n all

US 11,936,691 B2

19

UDP cloud server instances. The embodiment with session-
reconnection performs about 84% faster than the DTLSv1.2
communication.

On the client-side, the average roundtrip time (1n muilli-
seconds) was measured by taking the sum of the observed
durations for imtiating UDP communication, session estab-
lishment (1f present) and request-response time for different
payload sizes. FIG. 7B presents the average roundtrip time
for one of the mvestigated UDP client instances under
plaintext, DTLSv1.2, and embodiments without session-

reconnection (No Session) and with session-reconnection
(With Session) for different payload sizes (100B, 500B, 1

KB, 10 KB, 20 KB, 30 KB, 40 KB, 50 KB, 64 KB, 500 KB,
and 1 MB). Similar to the server-side analysis, UDP plain-
text and DTLSv1.2 1s evaluated only up to 64 KB of payload
data.

The embodiment with session-reconnection mechanism
performs very close to that of the plaintext as depicted by the
performance curves of the client-side average roundtrip
time, and performs well compared to DTLSv1.2. However,
similar to the TCP counterpart, the performance of the
embodiment without session-reconnection mechanism dete-
riorates 1n terms of average roundtrip time at the client-side.
Embodiments are able to provide faster communication with
higher level of security when used with session-reconnec-
tion mechanism.

FIG. 8A presents the bandwidth overhead graph for UDP
communications for different payload sizes. The overhead 1s
measured with respect to the bandwidth consumption of the
UDP plaintext communication. This graph shows signifi-
cantly higher overhead values for all communications than
their TCP counterparts. The reason behind such large over-
head values 1s that the bandwidth consumption for UDP
plaintext communication 1s sigmficantly less than the con-
sumption for same amount of plamtext data in TCP com-
munication. It 1s clear from FIG. 8A that the bandwidth
overhead for 100 bytes of UDP payload i1s more than 1300%
tor DTLSv1.2 and over 1500% more for the embodiment
without session-reconnection mechanism. However, when
session-reconnection mechanism 1s used, the embodiment
uses only 517% overhead with respect to UDP plaintext
communication and provides 57% gain over DTLSv1.2
communication.

FIG. 8A only shows overhead values for payload sizes
ranging from 100B to 30 KB as UDP plaintext communi-
cation 1s limited up to 64 KB payload data, and 40 KB, 50
KB and 64 KB payload sizes have less than 5% overhead for
DTLSv1.2 and embodiments with and without session-
reconnection. For 1 KB payload size, the embodiment with
session-reconnection mechamsm provides 39% gain over
the bandwidth consumption of DTLSv1.2. The graph shows
a decreasing trend with increasing payload sizes similar to
TCP communications. Therefore, 1n case of large volume of
data, the overhead 1s negligible. However, the embodiment
with session-reconnection performs better for smaller pay-
load sizes as well as with increasing payload sizes.

FIG. 8B shows the server-side memory usage (in MB) of
embodiments 1n one of the investigated UDP cloud instances
with respect to plamntext and DTLSv1.2 communications.
From FIG. 8B 1t 1s readily noticed that the embodiments
with and without session-reconnection mechanism show a
reasonable amount of memory usage for different payload
sizes, which lies very close to the memory usage of
DTLSv1 .2 communication. The usage pattern shows similar
behavior 1n all the investigated UDP cloud 1nstances and the
memory usage icreases proportionally with the increase in
payload size.

10

15

20

25

30

35

40

45

50

55

60

65

20

Overall, embodiments with session-reconnection mecha-
nism for both TCP and UDP communications perform
significantly better than TLSv1.3 and DTLSv1.2, respec-
tively, 1n terms ol server-side performance, client-side
roundtrip time, bandwidth overhead, and memory usage at
server-side. Once the session establishment phase 1s com-
plete, 1t can efliciently establish 256-bit encrypted channel
substantially without any performance, bandwidth, or
memory overhead. Moreover, embodiments for UDP com-
munication enable a large amount of data transmission with
message fragmentation, sequencing, delivery acknowledg-
ment, and asynchronous re-transmission mechanism. These
features together enable embodiments to overcome the limi-
tations of UDP and offer the same level of security in both
TCP and UDP communications.

However, embodiments without session-reconnection
mechanism may perform worse than TLSv1.3 and
DTLSv1.2 because of the temporary keypair generations 1n
cach session at both ends (chient and server). In every
session, two temporary keypairs are generated at each side
to establish the session. Keypair generation does have some
computing overhead. Therefore, when there 1s no session,
both parties require to generate the temporary keypairs every
time they want to establish a communication. While doing
so, they are going through all the phases. Therefore, the
client-side roundtrip time and the bandwidth overhead for
embodiments with no session reconnection 1s slightly
higher. Communicating with the central key server (CKS)
by the cloud user and the cloud instance does not have a
significant 1mpact on the average roundtrip time. Security
and performance are two conflicting metrics that need to be
balanced 1n some way. Embodiments with session-recon-
nection mechanism balance that overhead without sacrific-
ing security mechanism. Also, embodiments were not evalu-
ated against TLSv1.3 0-RU mode due to the unavailability
of the implementation of this mode 1 Javall.0.1 (LTS).

The contents of all cited documents are incorporated
herein by reference.

EQUIVALENTS

While the mvention has been described with respect to
illustrative embodiments thereot, 1t will be understood that
various changes may be made to the embodiments without
departing from the scope of the invention. Accordingly, the
described embodiments are to be considered exemplary and
the 1nvention 1s not to be limited thereby.

REFERENCES

Barker, E. B., Dang, Q. H.: SP 800-57 Pt3 R1. Recom-
mendation for Key Management, Part 3: Application-
Specific Key Management Guidance. https://nyl-

pubs.nist.govinistpubs/SpecialPublications/
NIST.SP.800-57Pt3rl.pdf (2013a).

Barker, E. B., Roginsky, A. L.: SP 800-131A R1. Tran-

sitions: Recommendation for Transitioning the Use of
Cryptographic Algorithms and Key Lengths. http://
nylpubs.nist.govinistpubs/Special Publications/
NIST.SP.800-131 ArLpdf (2015b).

BLAKE2—fast secure hashing. https://blake2.net/(2017).

Cramer, R., Shoup, V.: Design and analysis of practical
public-key encryption schemes secure against adaptive
chosen ciphertext attack. SIAM J. Comput. 33(1),
167-226 (2004). DOI 10.1137/50097539702403773.
URL http://dx.do1.org/10.1137/500975397024037773

US 11,936,691 B2

21

Kivinen, T., Kojo, M.:. More modular exponential
(MODP) difhe-hellman groups {for internet key
exchange (IKE). hittps://tools.ietf.org/html/ric3526
(2003).

Mell, P. M., Grance, T.: SP 800-145. The NIST Definition

of Cloud Computing. http://nylpubs.nist.govinistpubs/
Legacy/SP/nistspecialpublication800-145.pdf (2011).

Rescorla, E.: The Transport Layer Security (TLS) Proto-
col Version 1.3. RFC 8446 (2018). DOI 10.17487/

REFC8446. URL https://ric-editor.org/ric/ric8446.txt

Rescorla, E., Dierks, T.: The Transport Layer Security
(TLS) Protocol Version 1.2. RFC 35246 (2008). DOI
10.17487/RFC5246. URL https://ric-editor.org/ric/
ric5246.1xt

Rescorla, E., Modadugu, N.: Datagram Transport Layer
Security Version 1.2. RFC 6347 (2012). DOI 10.17487/

RFC634°7. URL https://ric-editor.org/ric/ric6347 .txt

Ronen, E., Gillham, R., Genkin, D., Shamir, A., Wong, D .,
Yarom, Y.: The 9 lives of bleichenbacher’s cat: New

cache attacks on tls implementations. pp. 435-452
(2019). DOI 10.1109/SP.2019.00062

The 1invention claimed 1is:

1. A method for secure data-in-transit cloud communica-
tions, comprising:

providing a communication security protocol between
two or more cloud entities:

using the communication security protocol to establish
secure communications between the two or more cloud
entities;

wherein when a first cloud entity communicates with a
second cloud enftity for the first time, a temporary
encrypted session 1s initialized between the first and
second cloud entities;

a pair of messages (PUB-ACK) are transmitted between
the first and second cloud entities and the first and
second cloud entities store each other’s pair of public
keys 1n the temporary session using a hashed session
key:

the first and second cloud entities generate a common
secret key to proceed with a data transmission phase;

the hashed session key 1s updated after every successiul
transaction (encrypted request-response);

wherein the first cloud entity receives the updated session
key hidden inside the encrypted response; and

when the session expires, the negotiated public keys and
the generated common secret key are destroyed;

wherein the communication security protocol implements
security elements using symmetric block encryption,
cryptographic hash, public key cryptography, and
ephemeral key-exchange i1n the communications
between the two or more cloud entities to provide a
secure communication channel;

wherein security for both the data and the cryptographic
keys 1s provided.

2. The method of claim 1, wherein the communication
security protocol includes a central key server (CKS)
mechanism;

wherein the two or more cloud entities are authenticated
using the CKS mechanism;

wherein the CKS mechanism stores, revokes, and distrib-
utes root public keys securely.

3. The method of claim 1, comprising providing perfect
torward secrecy (PFS) wherein each communication session
1s encrypted with a new secret key.

4. The method of claim 1, wherein the method 1s appli-
cable to both Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP) communications.

10

15

20

25

30

35

40

45

50

55

60

65

22

5. The method of claim 1, wherein the method 1s 1imple-
mented 1n a software application layer and 1s integrated with
application protocols and server systems.

6. The method of claim 5, comprising using one or more
message structures selected from publish (PUB), acknowl-
edge (ACK), reconnect (RECON), request (REQ), response
(RES), expired (EXP), and error (ERR).

7. The method of claim 6, wherein the message structures
facilitate one or more of secure session establishment,
reconnection, data transmission, and error handling between
cloud entities.

8. The method of claim 1, wherein the two or more cloud
entities include a cloud user (CU) and a cloud server
istance (CI).

9. The method of claim 1, wherein establishing cloud
communications comprises each cloud entity generating a
pair of temporary public-private keypairs;

wherein one keypair (Rivest—Shamir—Adleman/elliptic

curve cryptography (RSA/ECC)) 1s used to maintain
authenticity and integrity of a payloads, and the other
keypair (Ditie— Hellman exchange/elliptic curve Dit-
fie—Hellman exchange (DHE/ECDHE)) 1s used for
ephemeral key-exchange.

10. The method of claim 1, wherein after establishing a
secure session, the first and second cloud entities use the
common secret key to perform symmetric block encryption
for maintaiming confidentiality of request and response pay-
loads:

wherein the temporary keypair (RSA/ECC) 1s used to

perform payload signing and verfication that ensures
authenticity and integrity of the payload throughout the
SeSS101.

11. The method of claim 10, wherein the signing includes
a timestamp to protect against replay attacks.

12. The method of claim 11, wherein a cloud focussed
cryptographic hash function is used to protect the payload
integrity.

13. The method of claim 1, wherein when the second
cloud entity sends an encrypted response back to the first
cloud entity successiully, the communication channel 1is
terminated;

wherein the session remains valid for reconnection until

an expiration time 1s reached.

14. The method of claim 13, wherein after the commu-
nication channel i1s terminated, 11 the first cloud entity again
communicates to the second cloud entity and sends a valid
reconnection (RECON) packet with a last received session
key, the encrypted session 1s re-established between the first
and second cloud entities.

15. The method of claim 14, wherein a session key
mapping of the second cloud entity 1s maintained;

wherein, based on the session key, the second cloud entity

1s reallocated to the first cloud entity, and both the first
and second cloud entities use the previous pair of
public keys and the stored common secret key.
16. The method of claim 1, wherein the communication 1s
UDP;
wherein messages are fragmented into messagegrams
(MESGs) belfore preparing datagram packets;

wherein each MESG has a transaction 1d, sequence num-
ber, message count, index value, and data payload, and
based on these values, MESGs are merged back to form
an original message at the receiving end.

17. The method of claim 16, wherein delivery of MESGs
1s confirmed by sending an asynchronous packet-acknowl-
edgment (PACK) message immediately after receiving a
messagegram, and the receiver sends an asynchronous

US 11,936,691 B2

23

sequence-acknowledgment (SACK) message once all the
MESGs 1n a sequence are received.

18. An apparatus including a secure cloud communication
architecture for secure data-in-transit cloud communica-
tions, comprising:

two or more devices connected together over a commu-
nications network as two or more cloud entities:

a communication security protocol stored as mnstructions
on non-transitory computer-readable storage media and
executed on processors of the two or more cloud
entities;

wherein the communication security protocol establishes
secure communications between the two or more cloud
entities;

wherein when a first cloud entity communicates with a
second cloud entity for the first time, a temporary
encrypted session 1s iitialized between the first and
second cloud entities;

a pair of messages (PUB-ACK) are transmitted between
the first and second cloud entities and the first and
second cloud entities store each other’s pair of public
keys 1n the temporary session using a hashed session
key:

the first and second cloud entities generate a common
secret key to proceed with a data transmission phase;

the hashed session key 1s updated after every successiul
transaction (encrypted request-response);

wherein the first cloud entity receives the updated session
key hidden inside the encrypted response; and

when the session expires, the negotiated public keys and
the generated common secret key are destroyed;

wherein the communication security protocol implements
security elements using symmetric block encryption,
cryptographic hash, public key cryptography, and
ephemeral key-exchange i1n the communications
between the two or more cloud entities to provide a
secure communication channel;

wherein security for both the data and the cryptographic
keys 1s provided.

19. The apparatus of claim 18, wherein the communica-
tion security protocol includes a central key server (CKS)
mechanism;

wherein the two or more cloud entities are authenticated
using the CKS mechanism;

10

15

20

25

30

35

40

24

wherein the CKS mechanism stores, revokes, and distrib-
utes root public keys securely.

20. A non-transitory computer-readable medium having
stored thereon instructions that, when executed by proces-
sors of two or more cloud entities of a cloud computer
network, establish secure data-in-transit cloud communica-
tions between the cloud entities;

wherein establishing the secure cloud communications
comprises the cloud entities executing processing steps
that provide a communication security protocol;

wherein when a first cloud entity communicates with a
second cloud entity for the first time, a temporary
encrypted session 1s 1nitialized between the first and
second cloud entities;

a pair ol messages (PUB-ACK) are transmitted between
the first and second cloud entities and the first and
second cloud entities store each other’s pair of public
keys 1n the temporary session using a hashed session
key:

the first and second cloud entities generate a common
secret key to proceed with a data transmission phase;

the hashed session key 1s updated after every successiul
transaction (encrypted request-response);

wherein the first cloud entity receives the updated session
key hidden inside the encrypted response; and

when the session expires, the negotiated public keys and
the generated common secret key are destroyed;

wherein the communication security protocol implements
security elements using symmetric block encryption,
cryptographic hash, public key cryptography, and
ephemeral key-exchange 1n the communications
between the two or more cloud entities to provide a
secure communication channel;

wherein security for both the data and the cryptographic
keys 1s provided.

21. The non-transitory computer-readable medium of
claam 20, wherein the communication security protocol
includes a central key server (CKS) mechanmism;

wherein the two or more cloud entities are authenticated
using the CKS mechanism;

wherein the CKS mechanism stores, revokes, and distrib-
utes root public keys securely.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

