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Long QT Syndrome Diagnosis and Classification

Field

This invention relates to methods for detecting and diagnosing cardiac disease in a subject.
More specifically, the invention relates to diaghosing and classifying long QT syndrome in

electrocardiogram signals of a subject.

Background

Electrocardiogram (ECG) provides valuable information about cardiac electrical activity. A wide
range of cardiac diseases can be diagnosed by analyzing ECG and its characteristics. The ECG is
composed of different components including a P wave and a QRS complex followed by a T wave, which
represent depolarization/repolarization or contraction of different heart chambers (see FIG. 1). Most
heart related issues can be diagnosed by analyzing the morphology, amplitude, and duration of these

waves and time differences between them [1].

Long QT Syndrome (LQTS) is an arrhythmogenic cardiac disorder, associated with an abnormal
ventricular repolarization which results in ventricular arrhythmias. It is clinically characterized by a
prolonged QT interval (defined as the time between the start of the Q wave and the end of the T wave)
and abnormal T wave morphology [2]. LQTS could result in an abnormally fast heart rhythm called

torsades de pointes which is associated with sudden cardiac death.

More than 16 genetic mutations are currently known to be associated with different types of
LQTS. However, more than 65% of the population either have a mutation in gene KCNQ1, which is

associated with LQTS Type 1 (LQTS1) or KCNH2 which is associated with LQTS Type 2 (LQTS2).

Date regue/Date received 2023-12-13
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In clinical practice, QT interval is the only standard and universally accepted quantitative
measure used for non-invasive diagnosis of LQTS. It is usually measured by an ECG specialist manually,
using one of the well-known formulas such as Bazett’s formula [3):

QT
QTc £ .
VRR (1)
where QT and RR represent the QT and RR intervals, in seconds, and QTc¢ represents the heart-rate-
corrected QT interval. If the maximum QTc measured in an ECG is greater than a threshold (450 ms in

males and 470 ms in females), it is typically considered as LQTS [4].

However, measuring the QT interval this way is a time-consuming process which is subject to
human error. In fact, statistical analysis reveals that only 50% of cardiologists know how to measure it
appropriately [S]. This is because a universally accepted mathematical definition of the onset and/or end
point of the T wave does not exist, resulting in a high inter- and intra-analyst variability due to subjective
nature of the measurements. Moreover, due to the low signal to noise ratio and low amplitude of the T

wave, observation of the T wave morphology is a challenging task in most of the cases.

The distribution of QTc for genotype-positive LQTS and genotype-negative normal ECGs in a
dataset is depicted in FIG. 2. As seen in this figure, there is a wide range of overlap between QTc in
normal and LQTS patients. A similar observation is also reported in [4] for a large dataset of patients
over 24 hours of Holter recordings. According to these observations, the QTc¢ of around 25% of
genotype-positive LQTS patients is in the normal range [2]. Hence, even if the error in measuring the
QTc is ignored, using the QTc as the only feature for diagnosis LQTS leads to a high rate of false positives

and/or false negatives.

On the other hand, ECG delineation is a challenging task as the morphology, amplitude, and
duration of ECG components are variable. Specifically, due to the low amplitude of the P and T waves
and smooth transition at their boundaries, the onset and offset points are very difficult to locate even by
human experts. This issue becomes even more complicated in presence of noise and baseline
wandering. Furthermore, there is no universally acceptable definition of the locations of onset and

offset points of ECG components. These facts make automatic ECG delineation a challenging problem.

CA 3065208 2019-12-16
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Summary

One aspect of the invention relates to a method for detecting long QT syndrome in a subject,
comprising: obtaining data corresponding to an electrocardiogram (ECG) signal of the subject;
identifying a set of features in the data based on selected inflection points of the ECG signal; using the
set of features to categorize segments of the ECG signal; using the categorized segments of the ECG
signal and the inflection points to classify the ECG signal as normal or as long QT syndrome; wherein
long QT syndrome is detected when the subject’s ECG signal is classified as long QT syndrome.

In one embodiment, categorizing segments of the ECG signal includes determining beginning
and end points of Q and T waves.

The method may comprise selecting inflection paints of the ECG signal by finding zero-crossings
of a second derivative of the ECG signal.

In one embodiment, the second derivative of the ECG signal is determined using a finite impulse
response (FIR) filter. In one embodiment, the finite impulse response filter comprises a one-dimensional
Laplacian of Gaussian (LoG) filter.

In one embodiment, the second derivative of the ECG signal is determined by eliminating
variations of ECG signal concavity created by noise and by eliminating the effect of baseline wandering
of the ECG signal.

The method may further comprise identifying ECG segments enclosed by two consecutive
inflection points and categorizing each ECG segment into a cluster selected from P wave, QRS complex, T
wave, and baseline.

In one embodiment, categorizing ECG segments is performed according to a multi-dimensional
feature space. In one embodiment, categorizing ECG segments is performed according to a four
dimensional feature space. in one embodiment, the four dimensional feature space for an ECG segment
comprises duration, energy, maximum distance between amplitude of the ECG segment and a line
crossing its boundaries, and standard deviation of a parameter of the ECG segment.

The method may comprise classifying the ECG signal as normal or as LQT syndrome based on
two or more features selected from QT interval, base of T wave, rate of T wave fluctuation, slope of T
wave at its inflection points, vertical distance between two inflection points at boundaries of the T wave,
and heart rate.

The method may comprise using logistic regression on the two or more features to determine a

linear boundary between normal and LQT classes.

CA 3065208 2019-12-16
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The method may comprise further classifying a LQT syndrome ECG signal as a LQTS1 ECG signal
or a LQTS2 ECG signal.

The method may comprise subjecting the LQT syndrome ECG signal to logistic regression based
on a set of features related to T wave morphology.

In one embodiment, the set of features related to T wave morphology comprise number of local
peaks, base of the T wave, and difference between the slopes at their boundaries.

Another aspect of the invention relates to a non-transitory computer-readable medium
comprising instructions stored thereon, that when executed by a processor, cause the processor to carry
out a method as described herein.

In one embodiment, the instructions cause the processor to: receive data corresponding to an
electrocardiogram (ECG) signal of a subject; determine inflection points in the ECG signal; identify a set
of features in the data based on the inflection points; use the set of features to categorize segments of
the ECG signal; use the categorized segments of the ECG signal and the inflection points to classify the
ECG signal as normal or as long QT syndrome; output a result indicating whether the subject’s ECG signal
is classified as long QT syndrome. *

In one embodiment, the instructions cause the processor to output a result indicating whether
the subject’s ECG signal is classified as long QT syndrome Type 1 or long QT syndrome Type 2.

Another aspect of the invention relates to an apparatus, comprising a processor, wherein the
apparatus is adapted to: receive data corresponding to an electrocardiogram (ECG) signal of a subject;
process the ECG data according to a method as descried herein; and output a result indicating whether

or not the subject has long QT syndrome.

Brief Description of the Drawings

For a greater understanding of the invention, and to show more clearly how it may be carried
into effect, embodiments will be described, by way of example, with reference to the accompanying

drawings, wherein:
FIG. 1 is a diagram showing components and intervals of a normal ECG waveform.

FIG. 2 is a histogram showing distribution of heart-rate-corrected QT interval (QTc) for

genotype-positive LQTS, and genotype-negative normal ECGs.

4-
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FIGs. 3A-3D are diagrams showing different QT interval measurement methods, including
threshold (TH), differential threshold (DTH), slope intercept (SI), and peak slope intercept (PSl),

respectively.

FIG. 4 is a plot showing an ECG signal with baseline wandering, wherein dots represent inflection
points extracted using equation (3) presented herein, and shaded areas show the truncated energy

determined according to equation (5) presented herein.

FiGs. 5A and 5B are plots showing segmentation results for a typical ECG in (A) feature space

and (B) time domain.
FIG. 6 is a chart showing genotype-phenotype correlation in three types of Long QT Syndromes.
FIG. 7 is a diagram showing inflection points and intervals in an ECG.

FIG. 8 is a diagram showing inflection points extracted from first (dark dots) and second (gray

dots) LoG filters.
FIG. 9 is a block diagram of a system architecture according to one embodiment.

FIGs. 10A and 10B show classification accuracy results for (A} normal/abnormal classifier and (B)

LQTS type classifier.

Detailed Description of Embodiments

A variety of approaches have been proposed for automatic QT interval analysis including:
threshold-based algorithms [7], [8], hidden Markov models [6], curve fitting [2], wavelet transform [9]
and machine learning techniques [10]. In general, such approaches consist of the following main steps:

1) preprocessing, 2) ECG segmentation, 3) QT interval analysis and 4) LQTS classification.

The existing methods suffer from a variety of issues. They are sensitive to low-amplitude T
waves, noise, and baseline wandering. Moreover, their accuracy dependents on the threshold levels
used for decision making which are mostly adjusted arbitrarily, making most of them semi-automatic
algorithms. Furthermore, some of the existing methods require a prior knowledge about the QRS and T
waves characteristics, e.g., width and morphology. Pattern recognition methods have also been
proposed although they are not accurate in delineating abnormal ECGs, Therefore, a comprehensive
automatic approach which is able to deal with different morphologies and amplitude levels of T and QRS

waves in noisy ECGs with baseline wandering is highly desirable.

CA 3065208 2019-12-16
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FIGs. 3A-3D show various clinical approaches practiced by cardiologists for finding the
onset/offset of the QRS complex and the T wave, including amplitude threshold (TH; FIG. 3A),
differential threshold {DTH; FIG. 3B), slope intercept (SI; FIG. 3C), and peak slope intercept (PSi: FIG. 3D)
[11]. Recent studies show that among these methods, the S| method is the most reliable in clinical
practice [12]. In this method, a cardiologist defines the intersection between the maximum negative

slope line of the T wave and baseline as the offset of the T wave.

Moreover, existing methods look for the onset and offset of ECG waves. Although it is almost
impossible to locate the exact beginning and end paints of the P, QRS, and T waves in ECGs, analyzing

the characteristics of ECGs at their IPs is more straightforward as they can be described mathematically.

One aspect of the invention relates to a method for automatically diagnosing and classifying
different types of long QT syndrome. Embodiments may be implemented in automated systems that
diagnose and classify long QT syndrome in patients, and, e.g., are able to identify patients who are at a
high risk of mortality. The method includes identifying a set of features of an ECG signal based inflection
points (IPs) of the ECG signal. The set of features is then used to characterize and classify the ECG signal
as being long QT syndrome or normal, and Type 1 or Type 2 long QT syndrome. The method improves
the robustness of ECG segmentation significantly, which in turn provides superior accuracy of diagnosis

and classification relative to prior approaches.

Instead of using traditional lowpass/highpass filtering and windowing techniques as in prior
approaches, the embodiments employ a Laplacian of Gaussian {LoG) filter for inflection point detection.
This results in a significantly higher resolution and lower computational complexity. Furthermore, the

method is robust to noise and baseline wandering.

In addition, prior approaches may locate IPs by finding zero-crossings of the second derivative of
ECGs. However, since the ECG recordings are corrupted by noise, applying the derivative functions
boosts the noise and makes the output signals unstable. Embodiments described herein overcome this
problem by using a one-dimensional LoG filter. The LoG is a finite impulse response (FIR) filter which
delivers the second derivative of the Gaussian smoothed version of the input signal. The Gaussian part
of the LoG filter performs as a low-pass filter which eliminates variations of signal concavity created by
noise. On the other hand, the Laplacian part of the filter performs as a high-pass filter which eliminates

the effect of baseline wandering.

The output of LoG filter is then calculated as:

CA 3065208 2019-12-16
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Yn = L()G.S,,” )% ay, ()
in which * represents the convolution. The IPs are then identified by locating the zero-crossings of yn:
Zm = {1 S n i: Ar'yn-yn—l S 0}. mo= 1» Y 1\'1, (3)

where z,contains the time indexes of 1Ps and N and M represent the number of signal samples and iPs,
respectively. Once the IPs are located, the ECG segments surrounded by two consecutive IPs are

evaluated in order to categorize them into one of four possibie clusters: P wave, QRS complex, T wave,
and baseline. This is performed using the characteristics of these segments at their IPs. FIG. 4 shows an

ECG signal as well as its corresponding IPs.

Various features may be considered for inclusion in a multi-dimensional feature space, which is
then subjected to analysis to diagnose and classify different types of long QT syndrome. For example,

one or more features may be selected from:
» Time distance (duration) between consecutive (Ps
e Energy of an ECG segment

» Distance between the maximum amplitude of an ECG segment and a line crossing its

boundaries
» Standard deviation of a parameter of one or more of ECG segments
» Heart Rate
* QTc Bazzet (median & upper adjacent)
» QTc Fridericia (median & upper adjacent)
¢ QTc Framingham {median & upper adjacent)
» QT/RR (median & upper adjacent)
» Number of IPs in T wave (median & upper adjacent)
« Base of T wave (median & upper adjacent)
» Difference between |Ps of T wave {median & upper adjacent)
» Difference between slope of IPs of T wave (median & upper adjacent)

» Distance between peaks of T and R waves

-7-
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In the embodiment described below, four features were selected for the muiti-dimensional
space: duration W, energy En, distance Dm, and standard deviation S». These are described in detail
below. However, it will be appreciated that the invention is not limited thereto, as other features and

combinations of features may also be used.

From FIG. 4 it can be seen that a prominent characteristic of an ECG segment is its duration.

Therefore, the duration, or time distance between two consecutive IPs, was used as the first feature:

W, & M m=2. .M.
Js (4)

The second feature used was energy of ECG segments. The energy of an ECG segment may be
defined as the sum of squared values of that wave. However, because of baseline wandering, this may
not be accurate as low-energy waves positioned at higher baseline values may mistakenly be considered
as high-energy segments. Furthermore, isoelectric segments may represent high energy values. These
facts can be observed in FIG. 4. For example, as seen in FIG. 4, the isoelectric segment at time 9000 ms
has a higher energy than the T wave at time 8000 ms. Therefore, the term “truncated energy” (Em) was
defined as the energy concentrated inside each curve of the ECG signal. This energy was measured as
the sum of squared distances between the amplitude and the line connecting two |Ps at the segment

boundaries:

A
4

E, A ____f_g.__ Z’ (.’I:” _ ll(lm))2

'Z'm - 271:-[[
=2z | (5)

. . my. . . , . ,
in this equation, 17(:, is a linear function representing the line which crosses two consecutive IPs,

defined as follows:

{m] A lEZ‘"*‘ l(zm - n’) + J"Zm (n - 317;-1)

jim) &

1

S S ., (e)

‘»;
Note that the multiplication factor izm —Zm - 1| in (5) is the inverse of the ECG segment duration which

normalizes the truncated energy for that segment.

in FIG. 4, the truncated energy En of two T waves is depicted as shaded areas. As seen in this

figure, while the energy of the first T wave (T;) is considerably lower than that of the second T wave (T}),

CA 3065208 2019-12-16
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their truncated energy is almost equal (E;= E;). Moreover, the isoelectric segments represent a very low
truncated energy while their energy may be high due to baseline variations. This guarantees that ECG

waves would fall under the same categories in terms of En,, regardless of baseline wandering.

The maximum distance between the amplitude of an ECG segment and the line crossing its

boundaries was used as another feature in the analysis:

LR m .
D,, = max|z, — lf,l )], Zm—1 <1< Zm(y)

Wherem=[0, 1, 2, ..., k, ..., M]]; this distance is shown in FIG. 4 for a typical ECG wave, i.e., Di.

The fourth feature that was used is the standard deviation of the ECG segments:

T

,, 1 .
,S,,, 2 |— Z ‘ff;la - l"m‘z

izm = Zip—| l

=2, (8)

where:

I im
IIL

/tln
l o n |I
W=l 1 (9)

represents the mean of ECG segments. The two previous features are useful for distinguishing between

segments with the same energy but different morphologies.

The four features described above create a multi-dimensional feature space, in this case four-
dimensional. Other features may be used, and/or other numbers of features may be used to create a

multi-dimensional feature space, as noted above.

According to the multi-dimensional feature space, the mth ECG segment between two

consecutive IPs is represented by the following feature vector:
frn=[WmEmnDnSal’ (10)

At the next step of the method, the ECG waves are clustered into the four groups: P, QRS, Tand
baseline, using their properties in feature space. Note that £, is the only feature that takes on negative
or positive values, depending of the polarity of ECG segments, while the rest of the features only take on
non-negative values. Therefore, £, was normalized in the range of [-1,1)] and the rest of the features
W, Dmand S, were normalized in the range of [0,1] in order to avoid biasing. Furthermore, preliminary

analyses showed that ECG waves are more distinguishable in feature space when natural logarithms of

CA 3065208 2019-12-16
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features is employed. This is because the natural logarithm compensates for skewing of the features.
Interestingly, the analyses also reveal that the natural logarithms of features exhibit a distribution of

mixture of four Gaussian components, each for one of the P, QRS and T waves and baseline.

Therefore, an Expectation Maximization (EM) algorithm for Gaussian mixtures was used in order
to cluster the feature vectors automatically. Hence, the underlying density was defined as a Gaussian

Mixture Model (GMM) with C components:

—

0

p(E®) = 3 riN (£lse, g1, Bhi),
i=1 {11)
where N represents a multivariate Gaussian distribution with mean y;and covariance matrix X. The

unknown parameter vector © was defined as:
O = {1y, ,To M1, Mo Ey, , Ec} (12)

s = (s1,***,S¢) is also a vector of € binary indicator variables which indicates the cluster to which
fnbelongs. Finally, tis the probability that f, belongs to the ith cluster. The EM algorithm updates the

parameter vector O using the two steps E and M until the log-likelihood function converges:

A
log £(©) = > logp(£,|©).
m=1 (13)
Experimental segmentation results for a typical ECG signal are depicted in FIG. 5A for feature

space and in FIG. 5B for the time domain.

QT Interval Measurement and Analysis

Once the segments of the ECG waves are identified, the QT interval is analyzed in order to
classify subjects into one of the three categories: Normal, LQTS Type 1 (LQTS1)} and LQTS Type 2 (LQTS2).
The T wave morphology of these three types of LQTS is depicted in FIG, 6. As seen in this figure, in
patients with LQTS1, the T wave is typically a prolonged wave with a relatively high amplitude and a
wide base. However, in most of the cases, no distinct onset and/or end point can be identified for the T
wave. On the other hand, in patients with LQTS2, the T wave is usually a delayed wave with a relatively
low amplitude and fluctuations on its peak. Although the onset of the T wave is more obvious in this

case, locating the end point is still challenging.

-10-
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To quantify these measures so that they can be employed in an automatic classification

technique, a new set of features based on the IPs is set forth herein:

1) QT interval: The first feature that needs to be measured is the QT interval. As
mentioned above, there are multiple clinical approaches for finding the onset/offset of QRS complex
and T wave. However, since the Sl is the most reliable method in clinical practice, the QT interval is
measured using this approach. In this method, the intersection between the maximum negative slope
line of the T wave and baseline is defined as the offset of the T wave (FIG. 7). As seen in FIG. 7, first the
tangent line passing through the IP z,,, at the end of the T wave (L.} is found. However, in order to
make it robust to the variations caused by noise, the average of slopes at, e.g., five samples around zy.1,
i.e., [zk1-2 : 2x1+2] is used. As depicted in FIG. 7, the QT interval is then measured as the time
difference between the IP at the onset of the Q wave (Q.n) and the intersection of L..1and baseline

(Toff):
QT = Tott— Qon- (14)
The baseline is also defined as the harizontal line that passes through Qon.

2) Base of T wave: The width of the T wave is another feature which is typically measured
from beginning to the end of the T wave. However, as seen in FIG. 6, the beginning and end of the T
wave are not clear in some cases, especially in patients with LQTS1. Hence, the intersection of a tangent
line at the left IP of the T wave (L) and the baseline is used as the onset of the T wave (T, in FIG. 7).
Therefore, the base of the T wave is defined as: Tor— Ton. The baseline is also defined as the horizontal
line that passes through Qon. Similar to what was applied to L., the average of slopes at, e.g., five

samples around z, i.e., [zx-2 : zx+ 2] is used to make it more robust to the noise.

3) Rate of T wave Fluctuations: The rate of fluctuations at the peak of the T wave is
another feature which is used for distinguishing between LQTS1 and LQTS2. Since the LoG filter applied
to the ECG signals is robust to the small fluctuations on the top of the T wave, it cancels them and hence
they are not extracted as IPs. However, if another LoG filter with a smaller kernel size (e.g., five samples)
is applied to the original signal of the T wave, the noise is reduced but the T wave fluctuations are
preserved. Thus, the number of new [Ps between the original IPs extracted from the previous LoG filter
is used as a new feature. These new IPs are depicted in FIG. 8 as gray dots while the original IPs are

depicted as dark dots.

CA 3065208 2019-12-16
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4) Slopes at IPs: The slopes of the T wave at its IPs are used as two new features. These
features may be measured as the slopes of lines L and Lu.1in FIG. 7. The rate of the difference between
the slopes of these two lines is another morphological feature that represents the symmetry between

the left and right half of the T wave:

!Slope{LSk }i - l5|ope(£';h41 )l

D(f-‘) = -
SL. [slope(L;, )|

(15)
where |.| represents the absolute value and slope(.) delivers the slope of the lines L and La:1.
5) Difference Between IPs: The vertical difference between two {Ps at the boundaries of the

T wave are used as another morphological feature:

(k) _ "
DlP T Lo T Lz (1)

6) Heart Rate: The feature of heart rate may be measured as follow:
60
HR & woe.
RR. (17)

where RR represents the time interval between two consecutive peaks of the R wave in seconds.

LQTS Diagnosis and Classification

Diagnosis of LQTS syndrome is a fundamentally important aspect of embodiments. The ability to
classify different types of LQTS syndrome is another aspect that is of interest, however, the goal is to
identify a potential LQTS patient and refer the patient to the hospital with a high accuracy regardless of
the type of LQTS (aithough it is important to have some information about the type of LQTS). Therefore,
in contrast with most of the existing methods in this area, a hierarchical approach is used for for
diagnosis and classification of LQTS. In the first step, a patient is classified into one of two categories:
Normal and LQTS. In the second step, the LQTS patient is classified into one of two groups, LQTS1 and
LQTS2. A block diagram of an embodiment of the system is depicted in FIG. 9.

In each step, logistic regression is used for classification, which creates a linear boundary
between the different classes. Note that for each ECG signal, the values of the features vary among the
heartbeats. Therefore, there is a range of feature values for every patient. In one embodiment, the

expected value and variation of the features are considered as two properties, and the mean and

-12-
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standard deviation of the features is used in the calculations. Hence, for every feature introduced in the

method there are two values: mean and standard deviation, making the feature space twice as large.

Let x = [x1, X2, xy] be the feature vector. The first logistic regression classifier delivers a vector of

weights & = [9,,84,,94] and classifies the ECGs into two classes as follow:

N
LQTS: i 85+ Y By 20

i

N (18)
Nommal :  if 8y ny;,.ﬁ < D

pun

In the next step, patients with LQTS estimated from the first step are classified into one of two
categories: LQTS1 and LQTS2 using another logistic regression classifier. For this purpose, another set of
features related to T wave morphology (number of local peaks, base of the T wave, and difference
between the slopes at their boundaries) is used. Similar to the first classifier, the second classifier

10  delivers a vector of weights 6 = [84,84,,81] and classifies the LQTS patients into one of two classes as

follows:

Ad

LQTST:  if 4+ d a3 0
—~
tM

LQTS2:  f &y A <00
foz (19)

15 Embodiments may be implemented using a processor (e.g., a computer, a data processing

system, etc.), optionally in conjunction with a graphical user interface (GUI), which may include
functions such as receiving input {(ECG data, commands from a user of the system, etc.), analyzing data,
and displaying results and/or images on a display of the system. For example, the processor may receive
and/or process data corresponding to an ECG signal of a subject, and/or perform one or more function
20  asdescribed above, and output a result indicating whether long QT syndrome is detected, and
optionally whether the long QT syndrome is Type 1 or Type 2.
The computer includes executable programmed instructions for directing the computer to carry

out embodiments of the invention. Executing instructions may include the computer prompting the user
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for input at various steps. Programmed instructions may be contained in one or more hardware
modules or software modules resident in the memory of the computer or elsewhere. Embodiments may
include non-transitory programmed media containing instructions. The instructions direct the computer
to perform one or more of the functions described above, including, for example, one or more of
identifying a set of features in the data based on selected inflection points of the ECG signal; using the
set of features to categorize segments of the ECG signal; using the categorized segments of the ECG
signal and the inflection points to classify the ECG signhal as normal or as long QT syndrome, and
optionally to further classify the ECG signal as Type 1 or Type 2 long QT syndrome. The programmed
media may direct the computer to output a result indicating whether long QT syndrome is detected
when the subject’s ECG signal is classified as long QT syndrome, and optionally whether the long QT

syndrome is Type 1 or Type 2.

Embodiments will be further described by way of the following non-limiting Example.

Example

An embodiment as described above was implemented using ECG signals collected from 50
patients, using a standard resting 12-lead ECG. A confusion matrix of the two classifiers is depicted in
FIGs. 10A and 10B. The database included ECGs collected from 10 genotype-positive LQTS1 patients, 10
genotype-positive LQTS2 patients, and 30 genotype-negative normal controls. For every patient, 10
seconds of 12-lead ECG signals at a sampling rate of 250 Hz were recorded. A genetic screening result

for all patients was also available which was used as a gold standard to confirm the results.

As shown in FIG. 10A, the first step of the method classified the ECGs into normal and LQTS
classes with 100% accuracy. Then, in the second step, the LQTS signals were further classified into Type
1 and Type 2 with 100% accuracy as shown in FIG. 10B. Since the method used logistic regression which

creates a linear boundary, the method is robust to the problem of over-fitting.
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Date regue/Date received 2023-12-13



Equivalents

While the invention has been described with respect to illustrative embodiments thereof, it will
be understood that various changes may be made to the embodiments without departing from the
scope of the invention. Accordingly, the described embodiments are to be considered merely

exemplary and the invention is not to be limited thereby.
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Claims

1. A method for detecting long QT syndrome (LQTS) in a subject, comprising:

obtaining data corresponding to an electrocardiogram (ECG) signal of the subject;

identifying a set of features in the data based on selecting inflection points of the ECG signal by
finding zero-crossings of a second derivative of the ECG signal, wherein the second derivative is
determined using a finite impulse response (FIR) filter;

using the set of features to categorize segments of the ECG signal;

using the categorized segments of the ECG signal and the inflection points to classify the ECG
signal as normal or as long QT syndrome;

wherein long QT syndrome is detected when the subject’s ECG signal is classified as long QT

syndrome.

2. The method of claim 1, wherein categorizing segments of the ECG signal includes determining

beginning and end points of Q and T waves.

3. The method of claim 1, wherein the finite impulse response filter comprises a one-dimensional

Laplacian of Gaussian (LoG) filter.

4, The method of claim 1, wherein the second derivative of the ECG signal is determined by
eliminating variations of ECG signal concavity created by noise and by eliminating the effect of baseline

wandering of the ECG signal.

5. The method of claim 1, further comprising identifying ECG segments enclosed by two
consecutive inflection points and categorizing each ECG segment into a cluster selected from P wave,

QRS complex, T wave, and baseline.

6. The method of claim 5, wherein categorizing ECG segments is performed according to a multi-

dimensional feature space.

7. The method of claim 5, wherein categorizing ECG segments is performed according to a four

dimensional feature space.
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8. The method of claim 7, wherein the four dimensional feature space for an ECG segment
comprises duration, energy, maximum distance between amplitude of the ECG segment and a line

crossing its boundaries, and standard deviation of a parameter of the ECG segment.

9. The method of claim 1, comprising classifying the ECG signal as normal or as LQTS based on two
or more features selected from QT interval, base of T wave, rate of T wave fluctuation, slope of T wave
at its inflection points, vertical distance between two inflection points at boundaries of the T wave, and

heart rate.

10. The method of claim 9, comprising using logistic regression on the two or more features to

determine a linear boundary between normal and LQTS classes.

11. The method of claim 9, comprising further classifying a LQTS ECG signal as a LQTS Type 1 ECG
signal or a LQTS Type 2 ECG signal.

12. The method of claim 9, comprising subjecting the LQTS ECG signal to logistic regression based on

a set of features related to T wave morphology.

13. The method of claim 10, wherein the set of features related to T wave morphology comprise

number of local peaks, base of the T wave, and difference between the slopes at their boundaries.

14. A non-transitory computer-readable medium comprising instructions stored thereon, that when
executed by a processor, cause the processor to carry out processing steps comprising:

receive data corresponding to an electrocardiogram (ECG) signal of a subject;

identify a set of features in the data based on selecting inflection points of the ECG signal by
finding zero-crossings of a second derivative of the ECG signal, wherein the second derivative is
determined using a finite impulse response (FIR) filter;

use the set of features to categorize segments of the ECG signal;

use the categorized segments of the ECG signal and the inflection points to classify the ECG

signal as normal or as long QT syndrome;
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output a result indicating whether the subject’s ECG signal is classified as long QT syndrome

(LQTS).

15. The non-transitory computer-readable medium of claim 14, wherein the instructions cause the
processor to output a result indicating whether the subject’s ECG signal is classified as LQTS Type 1 or

LQTS Type 2.

16. Apparatus, comprising a processor and a non-transitory computer-readable medium having
instructions stored thereon, wherein the instructions cause the processor to:

receive data corresponding to an electrocardiogram (ECG) signal of a subject;

identify a set of features in the data based on selecting inflection points of the ECG signal by
finding zero-crossings of a second derivative of the ECG signal, wherein the second derivative is
determined using a finite impulse response (FIR) filter;

use the set of features to categorize segments of the ECG signal;

use the categorized segments of the ECG signal and the inflection points to classify the ECG
signal as hormal or as long QT syndrome {LQTS);

output a result indicating whether the subject’s ECG signal is classified as normal or as long QT

syndrome.

17. The apparatus of claim 16, wherein the instructions cause the processor to output a result

indicating whether the subject’s ECG signal is classified as LQTS Type 1 or LQTS Type 2.
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Abstract

A method for detecting long QT syndrome in a subject comprises obtaining data corresponding
to an electrocardiogram (ECG) signal of the subject, identifying a set of features in the data based on
selected inflection points of the ECG signal, using the set of features to categorize segments of the ECG
signal, and using the categorized segments of the ECG signal and the infiection points to classify the ECG
signal as normal or as long QT syndrome. Long QT syndrome is detected when the subject’s ECG signal is
classified as long QT syndrome. The method may include determining whether the long QT syndrome is

Type 1 or Type 2.
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