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ABSTRACT: 

The urban heat island (UHI) is a common effect caused by urbanization and has been studied to evaluate the thermal condition in 

cities worldwide. However, most previous UHI analyses are performed in major metropolitan cities.  This study conducts a 

spatiotemporal analysis of UHI in a rapidly expanding low-density suburban centre and determines how bio-productive land covers 

react and the extent of the disturbance to each land cover based on time series land surface temperatures extracted from Landsat 7 

ETM+ images. Two methods applied and compared are the single exponential decay method, which measures UHI footprint 

(UHIFP) on vegetation phenology, and the two dimensional Gaussian surface, which quantifies the influence based on distance from 

the local urban perimeter. Three spectral indices (Normalized Difference Vegetation Index (NDVI), Moisture Index (NDMI), and the 

Enhanced Vegetation Index (EVI)) were extracted and the residuals from the Gaussian model were compared based on these indices 

in order to better understand the thermal variations of each land cover within a UHI. The results show that the UHIFP of the studied 

low-density suburban centre is 1.4 times larger than the size of the urban centre, marginally smaller than previous analyses 

performed within high-density metropolises. All vegetated land covers experienced their maximum cooling effects before reaching 

the UHIFP perimeter while urban surfaces begin to diverge from the Gaussian model outside of the UHIFP. The residuals of sparse 

vegetation maintained strong correlations with each index throughout the growing season while NDMI retained the strongest 

relationships with every land cover. This study has helped us better understand the UHI effects of small communities with varied 

vegetation phonology based on the distribution of built-up pervious and impervious surfaces within the neighbourhood structure. The 

similar results from both methods indicate a strong urban cover influence overpowering the dominant distribution of agricultural 

surfaces throughout the growing season. 

1. INTRODUCTION

The urban heat island (UHI) is the product of anthropogenic 

processes with urbanization which modifies atmospheric and 

surface properties and alters the energy balance and thermal 

environment (Yang, Huang, and Tang 2019). It has been studied 

as far back as early 19th Century (Howard 1818) and is a well-

explored phenomenon with urban centres of varying sizes (Oke 

1973; Katsoulis and Theoharatos 1985; David R Streutker 2003; 

Krehbiel, Jackson, and Henebry 2016; Yao et al. 2019).  

Thermal infrared (TIR) data quantified from top of atmosphere 

radiances in satellite imagery is used to derive land surface 

temperatures (LST) (Tomlinson et al. 2011). UHI research, now 

commonly measured globally using LST, has accelerated since 

2005 with the majority of regional and seasonal focus being in 

China and summer daylight hours (D. Zhou et al. 2019). Using 

the UHI intensity measured between urban temperatures and a 

referenced rural region, the footprint of the UHI effect is a new 

index quantifying the spatial extent of the rural area affected by 

the UHI (Qiao et al. 2019).  

Two commonly used approaches for determining the spatial 

influence of the UHI are the urban heat island footprint 

(UHIFP) and the footprint of surface urban heat island (SUHI) 

model developed by D. R. Streutker (2002; 2003). The UHIFP, 

first introduced to measure the anthropogenic effects that 

urbanization has upon the warming of vegetation phenology (X. 

Zhang et al. 2004), has been adapted to determine the distance 

at which the UHI effects decay towards rural areas (D. Zhou et 

al. 2015). The footprint model of SUHI effect uses a Gaussian 

planar surface to fit the UHI effect and has been widely applied 

to study the UHI in many metropolitan areas (D. R. Streutker 

2002; David R Streutker 2003; Martin, Baudouin, and Gachon 

2015; Sobrino et al. 2012; Anniballe, Bonafoni, and Pichierri 

2014; Anniballe and Bonafoni 2015; Yao et al. 2017; Qiao et al. 

2019; D. Zhou et al. 2019). However, the footprints of both 

approaches have not been compared. 

The majority of previous UHI studies using remote sensing are 

performed with mean annual data from daily products using 

coarse spatial resolution sensors such as the Moderate 

Resolution Imaging Spectroradiometer (MODIS) (Yao et al. 

2017; Qiao et al. 2019). However, the smoothing effects with 

high-resolution thermal data are more appropriate for smaller 

scales despite having higher UHI magnitudes and spatial extents 

(Anniballe and Bonafoni 2015). Furthermore, the land cover 

products used in this analysis were also derived from Landsat 

which will help produce robust residual analyses based on each 

bio-productive surface.  

The application of UHI studies in a cold and urban country such 

as Canada is increasingly necessary. Climate models indicate 

greater warming in colder regions, accelerated transformations 

of nitrogen oxides and volatile organic compounds into ozone, 

and the population’s sensitivity to heat higher than 20˚C (Y. 

Wang, Berardi, and Akbari 2016). With most of the research 

focused on major metropolitan cities (Touchaei and Wang 2015; 

Y. Wang, Berardi, and Akbari 2016; Adamowski and Prokoph 

2013), the UHI effect of low-density suburban centers, where

the majority of Canadian urban growth occurs (Maoh and

Kanaroglou 2007), are often not assessed individually.

This study examines the UHI effect of a low-density suburban 

centre near the Greater Toronto Area (GTA) from 2000 to 2019 

using time series images of Landsat 7 Enhanced Thematic 

Mapper (ETM+). By comparing the footprint produced from 

both models, this analysis seeks to address three main 

questions: 1) what is the extent of thermal disturbance of the 
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UHI effect to each bio-productive land cover in the surrounding 

rural areas?, 2) are the calculated footprints from UHIFP and 

SUHI consistent?, and 3) what are primary factors influencing 

the spatiotemporal pattern that a low-density suburban centre 

has upon differing land covers with varying distance from the 

urban perimeter? 

 

2. MATERIALS 

2.1 Study Site 

The location of this study is in Milton, Ontario, Canada. It is 

situated within the GTA, the most populous area throughout 

Canada, and is surrounded by a plethora of agricultural and 

urban land covers, as well as some forested and wetlands. 

Milton’s population has risen 30.5% to 110,128 between 2011 

and 2016 making it the most rapidly growing community in 

Eastern Canada (Hennessey 2017). 

 

 

 

 

 

 

 

 

 

 

Figure 1. The distribution of land covers surrounding Urban 

Milton, its designated census tracts, and its location within the 

GTA in the 2015 land cover product. 

 

Urban Milton (UM) and Rural Milton are defined based on 

population density due to their relatively homogenous 

neighbourhood structures and their stability for time-series 

analyses (Gordon and Janzen 2013). Figure 1 displays in 

boldened polygons the appropriate census tracts representing 

UM for which the urban surfaces within are representative of 

the urban centre. Gordon and Janzen (2013) defined urban 

census tracts as having a population density in excess of 150 

people/km2 and exurban having a low gross population density 

and heavy reliance upon automobiles where over half of the 

labour force commutes to central cities for employment. This 

explains 13 of the census tracts; however, a fourteenth tract was 

selected due to its wide distribution of industrial urban surface 

components. 

  

2.2 Land Cover Data 

Version 3.0 of the Southern Ontario Land Resource Information 

System (SOLRIS) includes land cover maps in 2002, 2006, 

2011, and 2016 in the Milton area with a pixel resolution as low 

as 15 m (Science and Research Branch of the Ministry of 

Natural Resources and Forestry 2019). Landsat imagery is 

associated with the nearest chronological land cover product 

(2004 imagery is analysed with the 2006 land cover product). 

The SOLRIS dataset employs methodology presented by Lee et 

al. (1998) to optimize the implementation of the classification 

techniques. It presents reliable land cover products with overall 

accuracy of 93% based on an assessment conducted within a 

polygon encompassing the study area (Sampson 2007).  

 

19 unique classes existing within close proximity to Milton 

were grouped into five land cover categories, including open 

water. Table 1 displays the four merged classes; wetlands (any 

surface where the water table is either seasonally or 

permanently at, near, or above the substrate surface), forest, 

agriculture (including undifferentiated land covers in reference 

to alternative tilled surfaces not included in the ‘tilled’ class, 

hydro fields, forest openings, and brownfields), and urban 

(Science and Research Branch of the Ministry of Natural 

Resources and Forestry 2019). 

 

Agricultural Urban Forested Wetlands 

Plantations - 

Tree Cultivated 

Transportation Forest Treed 

Swamp 

Hedge Rows Built-Up Area 

- Pervious 

Coniferous 

Forest 

Thicket 

Swamp 

Tilled Built-Up Area 

- Impervious 

Mixed 

Forest 

Marsh 

Undifferentiated 

(orchards, 

   

Table 1. The reclassification of all land covers into four 

manageable categories. A fifth classification for water is not 

included as it was not reclassified. 

 

2.3 Remote Sensing Data Acquisition 

In order to maintain data consistency, only LST data acquired 

solely from Landsat 7 ETM+ from 2000 to 2019 were used in 

this study. The ETM+ imagery has 7 main bands (along with an 

additional panchromatic band) with spatial resolutions ranging 

from 15 to 60 meters, and a 16-day temporal resolution 

(National Aeronautics and Space Administration 2020). The 

LST is extracted using the statistical mono-window algorithm 

(SMW) conceived by Ermida et al. (2020) from atmospherically 

corrected surface reflectance Landsat 7 ETM+ products in 

Google Earth Engine (Malakar et al. 2018). Its accuracy meets 

the threshold proposed by Guillevic et al. (2018) with overall 

precision (in RMSE) of 1.0 K determined by Ermida et al. 

(2020). A 20% local cloud coverage threshold was used to 

select appropriate LST images for UHI analysis. 

 

2.3.1 Seasonality: The annual timeframe used in this study 

was based around the growing season due to the complexity of 

environmental variables with the local climate. Soil moisture, 

snow cover, cloud cover, atmospheric moisture, precipitation, 

and anthropogenic gases are among the elements widely studied 

to separate the typical extremes of summer and winter 

measurements (Bernhardt and Carleton 2019; K. Wang et al. 

2017; W. Zhou et al. 2014). Late autumn and winter data 

present far too many obstructions and interference caused by 

snow coverage. As a result, the annual calendar days included in 

the research consists of days 100 (April 9/10) to 290 (October 

16/17). These days exhibit minimal frost and snow coverage 

along with increasing solar radiation and vegetated growth 

(Ministry of Agriculture, Food and Rural Affairs 2020). In order 

to differentiate the portions of the growing season for this 

analysis, April and May (referred to as ‘Spring’) are combined 

representing the end of frost coverage and the initial planting 

phase, June through August is the main summer period, and 

September and October (referred to as ‘Autumn’) represent the 

harvest and end of season.  

 

3. METHODS 

3.1 UHIFP 

UHIFP uses a single exponential decay model as the following 

to examine temperature trends from an urban center toward 

rural areas (D. Zhou et al. 2015). 

 

 (1) 
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where  ∆T = mean LST differences between the urban area 

and rural buffers 

 A = maximum temperature difference using the mid-

value amongst the three furthest rural buffers 

 S = temperature decay rate 

 D = distance away from the urban centre 

 T0 = asymptotic value 

 

To determine the spatial properties of the UHI impact on rural 

surfaces, buffers are implemented as a factor of distance from 

the urban perimeter. In order to maintain a similar quantity of 

pixels within each buffer zone, twelve buffers surrounding the 

urban land cover area within UM census tracts are generated, 

each consisting of half the urban surface area (Zhou et al., 

2015). Transportation surfaces are masked out to avoid the 

inclusion of roads in the rural parts of UM census tracts. 

Instead, a 15 m buffer around all other urban surfaces is used to 

regulate a centralized urban centre. As this study uses four land 

cover products addressing Milton’s growth over 20 years, a 

different set of buffers are generated consistently maintaining a 

total rural area 6 times larger than the urban centre. 

 

Previous research examined annual mean UHIFP based on daily 

MODIS products (X. Zhang et al. 2004; D. Zhou et al. 2015; C. 

Meng and Dou 2016). Due to the exchange of a 16 days revisit 

cycle of ETM+, a 5-years period is implemented with the 

central year determining the land cover product. With all 16 

time periods (period 1 = 2000-2004), each set of results are 

inputted into the single exponential decay model.   

  

All cloud cover pixels and elevations greater than 50 m from the 

highest point in UM were removed from the UHIFP model. The 

footprint determination is based upon the point at which each 

exponential model reaches 95% of their asymptotic values (X. 

Zhang et al. 2004). The final product represents the area 

surrounding UM affected by the local UHI within the proximate 

exurban buffers. 

 

3.2 SUHI Gaussian Fit Model 

The planar fit Gaussian surface was developed through the 

method described by D. R. Streutker (2002; 2003) to quantify 

the UHI as a continuously varying surface. Its purpose is to 

present a quick and robust technique for analysing and 

parameterizing the spatial distribution of the SUHI for 

quantitative inter-city comparisons or single city time scale 

analyses (Anniballe and Bonafoni 2015). To access the 

Gaussian surface, the following equation is used:  

 

 

 (2) 

 

 

 

where  x0, y0 = central location of the model’s UHI 

 a0 = magnitude 

 ax, ay = spatial extent 

 φ = orientation 

 

All cloud and water pixels must first be masked out from the 

LST image followed by the temporary removal of urban pixels 

within UM to produce datasets consisting entirely of rural 

pixels. After acquiring the mean rural temperature, it is then 

subtracted from the entire LST image to generate the SUHI 

Gaussian surface.  

 

Its results produce two elliptical thresholds representing the 

footprint of the SUHI in each image. One ellipse determines the 

distance from the central location at which the temperature 

decreases to a fraction of the magnitude, 61% (e-1/2) of the 

maximum value, and the second ellipse is a constant threshold 

where the SUHI planar fit surface temperature is greater than 

1.0 K (Anniballe and Bonafoni 2015). 

 

3.2.1 Residuals Analyses: The SUHI planar fit model does 

not produce thresholds that align with the shapes of either UM 

or the rural buffers produced for the UHIFP model. 

Alternatively, the Gaussian surface produces residuals which 

can be analysed with the buffers and a land cover distribution 

map. Four analyses are made regarding the residuals’ 

relationship with the planar surface; a ratio analysis, a buffer 

comparison, and a timeframe analysis. 

 

The ratio analysis divided the quantity of positive residuals by 

the negative and the results with each land cover are displayed 

in a box-plot separated by months. Its purpose is to quantify the 

relationship that pixels within each land cover have with the 

planar fit model depending on whether the residuals are above 

or below the SUHI surface. 

 

The Gaussian surface’s residuals are also analysed using the 

buffer areas applied to the UHIFP model. The buffer analysis 

helps determine the SUHI model’s spatiotemporal influence and 

provides a spatial analysis comparable with the UHIFP. 

Seasonal divisions are implemented based on vegetation growth 

and solar radiation separating the beginning, middle, and end of 

the growing season. The mean seasonal distribution of residuals 

for land covers within each buffer is compared. 

 

The time frames used for each distribution of land covers are 

incorporated into a time frames analysis. Using Google Earth 

Engine, mean imagery for each year associated with a SOLRIS 

product was calculated and compared. General UHI 

magnitudes, spatial extents, and Gaussian surface residuals are 

analysed for each part of the growing season. Because of the 

nature of this analysis, a series of complications occur such as 

the inability to control local cloud coverage and a bias towards 

the few days with clear skies. These results are taken with 

caution and only conclusions regarding general UHI trends are 

made. 

 

3.2.2 Vegetation Health and Moisture Correlation 

Analyses with Residuals: Understanding the variables 

affecting the residuals of each bio-productive land cover in the 

SUHI model is achieved through correlation analyses between 

the residuals and vegetation and moisture indices. The 

multispectral Landsat 7 bands required from each date are blue, 

red, near infrared (NIR), and shortwave infrared (SWIR). 

Amongst the vegetation indices, NDVI is more commonly used 

due to its cancellation of topographic, cloud cover, atmospheric, 

and changing sun angle effects with vegetation monitoring 

(Alademomi et al. 2020). 

 

 (3) 

 

Enhanced Vegetation Index (EVI) acts as an enhancement to it 

with its atmospheric correction, saturation in areas with high 

biomass, and soil reflectance reduction abilities (Alademomi et 

al. 2020). 

 

 (4) 
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Normalized Difference Moisture Index (NDMI) behaves as an 

index to reflect the moisture content within the soil and 

vegetation canopy (Zhu et al. 2019). 

 (5) 

 

The comparisons made with vegetation indices use Landsat 7 

ETM+ Surface Reflectance Tier 1 products on the same dates as 

the LST acquisition. A cloud mask was installed, the residuals’ 

pixels were converted to points, and all values from each 

vegetation/moisture index were extracted to the nearest point. 

The correlation coefficient is calculated with a range of 1.0 

(positive correlation) to -1.0 (negative correlation). 

 

4. RESULTS AND DISCUSSION 

4.1 UHIFP 

The results from the UHIFP are determined based on the 

distance at which the exponential model reaches 95% of its 

asymptotic value. For Milton during the growing season, the 

mean UHIFP is achieved at 1.4 times the urban area (Figure 2). 

As a result, the first three buffers are representative of the area 

within the local average UHIFP. The strongest outliers were the 

first two time frames (2000-2004 and 2001-2005) with 

marginally increased footprints (1.8 times the size of the urban 

centre). 

 

Figure 2. The determined size of the UHIFP, where the 

temperature declines to 95% of the asymptotic value, is 1.4 

times the urban area of Milton based on an overall average. 

 

The size of the UHIFP within each set of mean sampled 

imagery was consistent after the first two time frames. The 

results experienced in Milton are much smaller than the 

conclusions drawn by X. Zhang et al. (2004), which were 2.4 

times the area of an urban centre in eastern  

North America. Such results are related to the local conditions 

influencing the UHIFP analysis, such as population density, city 

size, proximity to a larger urban centre, and the surrounding 

vegetation distribution. 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. The mean LST collected within each time period 

within the urban centre and the first four buffers. Daily air 

temperature data from the nearest station to Milton, in 

Georgetown, is applied to separate the local UHI effects from 

regional climate change. 

 

Figure 3 presents the mean LST within the urban centre and the 

adjacent rural area 2 times the urban centre’s size (first four 

buffers). The temperature difference between the urban centre 

and the first buffer exhibits minimal change while an increasing 

difference is evident between the first and second buffers after 

2005. Following the second buffer, the mean temperature 

differences amongst buffer regions remain consistently small 

while most UHI effects have decayed. The data in Figure 3 

presents mean LST increasing at a higher rate within the urban 

centre and the first buffer than the following buffers. As a 

result, the UHIFP of the very small low-density community, 

prior to its expansion, is larger relative to the urban centre’s 

area.  

 

The proportion of each land cover within the local UHIFP 

compared to its distribution throughout the area 6 times the size 

of UM can help determine the urban centre’s impact on each 

type of surface. The portion of forested surfaces within the 

footprint was between 11% and 14% of its total. Wetlands and 

agricultural land covers contain slightly higher proportions 

within the UHIFP (19% - 22% and 24% - 27% respectfully). 

The majority of urban surfaces were contained within the 

footprint (between 65% and 73%); however, exclusive of the 

urban centre, only between 18% and 27% of the rural urban 

surfaces were located inside the footprint. 
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4.1.1 UHIFP Size Discussion: The population arrangement 

and overall size of an urban centre are foundational in 

determining the footprint of a UHI. Population density can have 

a major effect on temperature differences within a city as it 

grows (Ramírez-Aguilar and Lucas Souza 2019). An increased 

distribution of impervious surfaces, coinciding with rising 

human activity frequency, contribute to the growing intensity of 

a UHI (F. Meng and Liu 2013). In comparison with previous 

studies applied to larger municipalities with denser population 

distributions, Milton’s suburban stature is incapable of 

reproducing the increasing trends of sensible heat flux 

experienced in larger cities with less vegetated surfaces.  

 

The proximity to much larger urban centres heavily affects the 

determination of the local UHIFP. All of the surrounding UHI 

footprints influence the referenced rural temperatures used for 

Milton’s analysis. For example, the first two time periods 

(2000-2004 and 2001-2005) determined larger footprints due to 

Milton’s smaller urban size and a reduced external influence 

from neighbouring UHI footprints. Milton’s growth coincides 

with neighbouring communities’ development and their 

influence on rural temperatures. As a result, an inevitable 

discrepancy is found between urban and rural temperatures in a 

suburban setting compared with a larger metropolis, being the 

primary influence on rural temperatures.   

 

4.1.2 Vegetation Distribution within the UHIFP: The 

vegetation distribution surrounding Milton is another major 

variable on its ecological impact upon the surrounding 

temperatures. While urban areas surrounding forested or highly 

vegetated areas produce a greater discrepancy in UHI, partly 

due to residential energy consumption for cooling during the 

summer (Imhoff et al. 2010), Milton’s rural land covers consist 

largely of sparse vegetation. The Niagara Escarpment, a large 

nearby forested area, was omitted from the rural UHIFP due to 

the impact of elevation. Additionally, being an inland town with 

limited open water and wetlands surfaces in close proximity 

may result in lower evapotranspiration comparisons between 

urban and rural (D. Zhou et al. 2015; Li, Zhang, and Kainz 

2012). As a result, urban centres lacking nearby dense 

vegetation may experience reduced UHIFP sizes. 

 

The diminutive proportion of the study area’s dense vegetation 

located within the UHIFP, as opposed to its distribution in the 

outer buffers, can have a major influence on the UHI effect on 

rural LST. Its cooling effects and spatial distribution have the 

ability to reduce the footprint encroachment on rural vegetation. 

Additionally, as the UHIFP contains a quarter of the local 

agricultural surfaces and the majority of urban surfaces, the 

spatial variability of vegetated land covers, and concentration of 

impervious surfaces, is a major contributor to a smaller footprint 

size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.3 UHIFP Limitations: The limitations within this study 

for calculating the UHIFP with Landsat 7 ETM+ consists of an 

optimistic 16 days revisit cycle, only one time of day where 

imagery acquisition is possible, and the distribution of snow and 

ice surfaces in the winter. Previous research (D. Zhou et al. 

2015) utilized MODIS products due to their near daily data 

availability, possibility for comparing daytime and night-time 

data, and much larger metropolitan sizes. In comparison, 

Milton’s urban area is dwarfed by the far larger North American 

and Chinese cities. The resulting 5 years periods applied to 

determine mean pixel values for a UHIFP is unable to reproduce 

daily samples possible with MODIS analyses; however, this 

study’s results were consistent with every period. Until a 

satellite is launched with similar spatial resolutions as Landsat 

and a major reduction in its revisit cycle, applying a 5 years 

average may presently be the optimal solution as uniform 

results were found within each 5 years period. With winter 

conditions, the model remains sufficient provided the urban area 

is a large enough size. 

 

4.2 SUHI Model 

The SUHI model was generated from a limited quantity of 

image acquisition dates due to a coarse temporal resolution and 

cloud interference. From the available results, the SUHI 

magnitude observes a rising trend (0.16 K/year). From Figure 4, 

it can be seen that the area with 1.0 K UHI threshold is 

increasing at a much more dramatic rate of 3626.7 pixels/year 

compared with the e-1/2 UHI threshold (a slope of 559.5 

pixels/year). 

 

 
Figure 4. The size of both SUHI thresholds from each acquired 

image. The total quantity of urban pixels within Urban Milton 

(green) and the line of regression (blue) are presented to 

compare planar surface SUHI threshold results with actual 

urban area. 
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The surface thresholds indicated rising trends, and in the case of 

the 1.0 K temperature ellipse (Figure 4), greatly surpassing the 

area of UM. The rate at which the thresholds grow appears to 

align with the rate of expansion of the built-up environment. 

Based on the distribution and quantity of urban pixels within 

UM for each land cover product, the timeframe between 2006 

and 2011 is when UM experienced its greatest degree of urban 

development. The declining vegetated surfaces along with 

increasing impervious surface, anthropogenic gases, and 

population densities are all highly correlated with higher surface 

temperature, especially during the urbanization process (Lu et 

al. 2015; Yu et al. 2019). The development of new built-up 

environments result in increased volume of ozone, faster 

pollutant production lofted to higher altitudes, and greater 

transport of the adverse effects on air quality (D. L. Zhang et al. 

2011). Further evidence of these effects are displayed in the 

Table 2 time frames comparison where the most dramatic 

changes in magnitude occurs between 2004-2008 and 2009-

2013 (with the exception of autumn where observations were in 

minimal supply). 

 

Time series results incurred from the overall SUHI data, along 

with the time frames analysis with residuals data, must be taken 

with speculation due to the insufficient temporal resolution of 

the Landsat 7 ETM+ sensors. In order to accurately determine 

the SUHI effects, a spatial resolution similar to Landsat is 

required along with a 2 days revisit cycle and the overpass time 

immediately before sunrise (Sobrino et al. 2012). There are 

currently no spaceborne thermal sensors which satisfy these 

requirements. The available products from Landsat 7 meet the 

spatial resolution requirements; however they are heavily 

unqualified for the temporal obligation. Although trends are 

noticeable, conclusions based on magnitudes are incapable of 

being drawn due to insufficiencies with the products. 

 

4.2.1 Residuals Ratio Analysis: Figures 5 and 6 list the 

ratio between quantities of positive and negative residuals in 

each month for each land cover type. The results from the ratio 

analysis indicate the distinctive impact of urban cool islands 

within the forested and wetlands surfaces surrounding UM. 

April and May data describe residual cooling behaviour less 

intense than in the summer and early autumn.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The residuals ratio for agriculture and urban land 

covers determined by dividing the number of positive residuals 

by negative residuals within each captured Landsat 7 ETM+ 

product. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The residuals ratio for forested and wetlands land 

covers determined by dividing the number of positive residuals 

by negative residuals within each captured Landsat 7 ETM+ 

product. 

 

The most interesting results in this analysis are within the 

agricultural and urban surfaces. The agricultural residuals, being 

the dominant land cover throughout the study site, follows the 

Gaussian planar surface closely with only a marginally greater 

quantity of negative residuals. Spring and Autumn months 

exhibit results which better align with the SUHI model as 

opposed to summer months where a much more definitive 

distribution of negative residuals exist. The cooling effects 

climax in August with the average ratio being 0.72, as seen in 

Figure 5.  The urban results contrast vegetated surfaces where 

positive residuals consistently outnumber negative residuals. As 

summer progresses, the distribution of positive residuals grows 

to an August peak. 

 

It is well established that vegetated land covers behave as 

cooling zones within a UHI (Oke 1979; Sun, Wu, and Tan 

2012; Li, Zhang, and Kainz 2012; Skelhorn, Levermore, and 

Lindley 2016; Q. Huang et al. 2019; Alademomi et al. 2020). 

The ratio analysis results in Figure 5 further exemplify that 

notion with only the urban land cover category obtaining a 

greater ratio of positive residuals compared to negative 

residuals. As summer progresses and thermal emissivity and 

capacity on impervious surfaces increases, the divergence urban 

land covers’ residuals have compared to the vegetated covers 

increases (H. Huang et al. 2019). The cooling effects from 

vegetated land due to evapotranspiration are largely removed 

when replaced with impervious materials (Oke 1979). The 

result is a surface with a heavily limited ability for 

evapotranspiration, and cooling properties, culminating in a 

warmer surface temperature compared to vegetation. 

 

The crop surfaces in spring months (April and May) along with 

the autumn months of September and October (to a lesser 

degree) exhibit a reduction in its cooling abilities within the 

UHI. With the possibility of frost as late as May and cultivation 

occurring in September, the agricultural results in Figure 5 

display considerable distributions of bare earth at the beginning 

and end of the growing season. The summer months of July and 

August, when sparse vegetation growth achieves its peak 

performance, provide its greatest ability of cooling below the 

SUHI surface.  

 

Pixels within the other two land cover categories observed a 

much larger ratio of negative residuals throughout the growing 

season, especially in summer and autumn. Forests and wetlands, 

which usually have low LST due to its dense vegetation 

compared to crop lands which contain more sparse vegetation 

along with bare soil, are known to behave as cool areas within a 
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UHI (Sun, Wu, and Tan 2012). In the spring, forested land 

covers deviated the least of any season (-0.27˚C compared to -

0.54˚C in the summer) from the UHI temperature mean in 

Wuhan, China from 2005 to 2015 (Q. Huang et al. 2019). The 

densely vegetated land covers surrounding Milton behave in a 

similar manner with its most effective cooling abilities 

occurring after spring. 

 

4.2.2 Residuals Buffer Analysis: Figure 7 shows the density 

of mean SUHI residual values for each land cover within the 

buffer regions. The buffer analysis indicates the spatial 

distribution of residuals from each SUHI image as distance 

increases from the urban centre perimeter. Applying the results 

from the UHIFP (rural area 1.4 times the size of the urban area), 

the first three buffers are within the local footprint of the UHI. 

 

 

 
 

Figure 7. Density plot of the results from the buffers analysis 

with the residuals of each land cover within the SUHI models. 

 

Seasonality plays a major role in determining the cooling and 

warming abilities within a UHI with dense vegetation and urban 

lands. Summer is when impervious surfaces are warmest and 

deviate most from the Gaussian surface. Forests and wetlands, 

in contrast, provide their greatest cooling effect during summer 

and deviate most while moderately reducing its cooling abilities 

in autumn. Agriculture exhibits minimal seasonal effects within 

Milton’s UHI. 

 

The buffer analysis with both forested and wetlands pixels 

determined a cooling effect which is much more evident within 

the first three buffers and in the main summer months. 

Throughout the year, the spatial influence which densely 

vegetated surfaces have on the UHI in Milton are most intense 

within the surrounding area 1.5 times the size of the urban 

centre (first 3 buffers), the rural area within the UHIFP. They 

remain definitive urban cool zones throughout the dataset with 

the highest mean residual value (-2.02 K) existing within the 

wetlands category at the fourth buffer zone during Spring. 

While green spaces within urban environments are known for 

the ability to improve local air quality, assist in the reduction of 

energy required for cooling, and optimize the natural ecological 

system (Ozyavuz 2012), the dense vegetation is most intense 

within the UHIFP. 

 

 

 
 

Figure 8. The mean and first standard deviation residual value 

of each land cover within each season for each buffer away 

from the central urban perimeter. 
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Agricultural land covers convey similar observations to the 

more densely vegetated pixels. Their respective cooling effects 

are limited to the first five buffers within every season and 

maximized within the first three (the area within the UHIFP). 

The mean residual values ranged between -0.67 K and -0.26 K 

within the first 5 (4 for autumn) buffers away from the urban 

centre before stabilizing with the Gaussian surface. Being the 

dominant land cover of the region, the distribution is more 

likely to contribute to the SUHI planar fit and produce residuals 

closest to zero, especially during the time before planting and 

after cultivation where its consistency is largely bare soil. The 

summer months contributed slightly more cooling as a result of 

its peak vegetated state (Figure 8), especially within the outer 

buffers. 

 

The reaction within the first buffer zone for the urban land 

covers’ residuals is due to this paper’s methods of obtaining an 

urban perimeter. The urban centre was calculated excluding 

transportation within UM census tracts and joined with a 15 m 

buffer to replace the missing roadways and obtain a centralized 

urban centre. As a result, heavy traffic located on the major 401 

highway along with the immediate outer roads are the main 

contributors to the first buffer’s urban distribution.  

 

Urban results provide the highest LST and, aside from Spring, 

reliably positive residuals. For the remaining buffers, the 

average urban residuals conform closely to the Gaussian planar 

fit until the final 6 buffers away from the urban centre where its 

positivity increases (especially during the summer and autumn 

months). The area located outside of Milton’s UHIFP (buffers 4 

– 12) is representative of where the ecological footprint that 

Milton has on its surrounding vegetation phenology has 

decayed (X. Zhang et al. 2004). The positive residual values 

that urban pixels experience outside of the UHIFP indicates a 

localized warming divergence from the Gaussian surface, which 

has decayed. 

 

4.2.3 Time Frames Analysis: Mean LST for each time 

frame as each of the land cover datasets were used to determine 

general trends. Table 2 presents the SUHI magnitude, model 

thresholds, and the total quantity of available images within the 

region for each section of the growing season. 

 

Results with SUHI magnitudes, thresholds, and measures of fit 

experience growth between the first and last time frame. An 

apparent rising SUHI magnitude is displayed within the first 

three time frames during the spring (3.93 K to 6.67 K) and 

summer (6.55 K to 8.09 K) of Table 2 before exhibiting a slight 

UHI magnitude reduction in the final time frame. The areas 

within each SUHI threshold experiences growth, especially in 

the final three time frames of each season.  

 

Significant portions of the results do not indicate rising trends. 

The autumn months, with their limited quantities of clear sky 

pixels, provides uncharacteristically the largest thresholds 

within its first time frame. Fluctuations are also evident in the 

autumn’s magnitudes throughout the research period. 

 

The acquisition of mean LST data within each time frame 

presents complications with the results. A limited quantity of 

observations are available within each section of the growing 

season (16 to 26 available images for the summer months 

compared to 8 to 12 for the autumn months). The insufficiencies 

with the data results in bias and influence from outliers. With 

those considerations, even the period with the greatest potential 

quantity of observations (summer 2014-2019 has 26 

observations) remains insufficient for decisive conclusions. 

 2000-

2003 

2004-

2008 

2009-

2013 

2014-

2019 

Months 4/5 

Magnitude (k) 

 

3.93 4.78 6.67 5.14 

Months 4/5 

Thresholds (Pixels) 

[e-1/2 / 1.0 K] 

 

15,028/ 

41,151 

15,876/ 

49,658 

21,656 

/ 

82,202 

32,789 / 

107,341 

Months 4/5 

Available Images 

 

11 11 11 15 

Months 6/7/8 

Magnitude (K) 

 

6.55 6.92 8.09 7.81 

Months 6/7/8 

Thresholds (Pixels) 

[e-1/2 / 1.0 K] 

 

17,600/ 

66,158 

17,043/ 

65,902 

17,761 

/ 

78,457 

28,505 / 

117,164 

Months 6/7/8 

Available Images 

 

16 22 22 26 

Months 9/10 

Magnitude (K) 

 

Months 9/10 

Thresholds (Pixels) 

[e-1/2 / 1.0 K] 

 

Months 9/10 

Available Images 

3.48 

 

 

48,299/ 

120,381 

 

 

8 

5.11 

 

 

14,393/ 

46,960 

 

 

9 

4.09 

 

 

25,610/ 

72,078 

 

 

10 

5.74 

 

 

29,394/ 

102,721 

 

 

12 

Table 2. The results from the time frames analysis which 

incorporated acquiring averaged imagery from each time period. 

It should be noted that the quantity of possible observations is 

attributed to the number of products available within each tile, 

thus not every observation is incorporated into the area of the 

study area. 

 

4.2.4 Vegetation and Moisture Index Correlations: The 

results from the correlation analysis between the SUHI model’s 

residuals and the moisture index (Figure 9) provide the most 

consistently positive correlation results with all land cover 

categories. Wetlands and agriculture provided the strongest 

relationships throughout the growing season along with 

significantly positive results with urban pixels in the summer. In 

spring months, the strongest corrections occurs in the wetlands 

(0.52) while the weakest ones appears in urban land (0.31). 

Summer has agriculture being the strongest (0.74) with urban 

surfaces being second strongest (0.56). In autumn, agriculture 

and wetlands have stronger relationships (0.62 and 0.58 

respectfully) and urban surfaces were the weakest again with 

moderate results (0.45). 
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Figure 9. The correlation coefficient each land cover’s residuals 

have with the NDMI product with the same Landsat 7 product. 

This comparison was determined to have the strongest 

correlation with the residuals of every land cover. 

 

 

The results with EVI (Table 3) indicate stronger relationships 

with dense vegetation in the early growing season. Average 

wetlands and forested results in the spring are 0.44 and 0.42 

respectfully compared to 0.36 in agriculture. The mean 

correlation coefficients for the remainder of the growing season 

are similar with all three vegetated surfaces (between 0.38 and 

0.41 in the summer and 0.27 to 0.30 in the autumn). Urban 

pixels experienced their weakest correlations with this 

vegetation index. 

 

The results with NDVI (Table 3) describe a strong relationship 

with agriculture while moderately weaker with dense vegetation 

and low-density urban surfaces in the summer and autumn 

months. Sparse vegetation experienced similar correlations to 

NDVI as dense vegetation in the spring months (mean values 

between 0.36 and 0.39) before providing significantly stronger 

results throughout the remainder of the year (0.67 for the 

summer and 0.53 in autumn). Urban pixels, alternatively, had 

weak relationships in the early growing season before providing 

similar results to dense vegetation in the summer and autumn. 

 

 Agricultural Forested Wetlands Urban 

EVI  

(M. 4/5) 

0.36 0.42 0.44 0.19 

EVI  

(M. 6-8) 

0.40 0.38 0.41 0.28 

EVI  

(M. 9/10) 

0.27 0.27 0.30 0.18 

NDVI  

(M. 4/5) 

0.39 0.36 0.37 0.29 

NDVI  

(M. 6-8) 

0.67 0.42 0.46 0.49 

NDVI  

(M. 9/10) 

0.53 0.39 0.47 0.40 

NDMI 

(M. 4/5) 

0.47 0.44 0.52 0.31 

NDMI 

(M. 6-8) 

0.74 0.51 0.54 0.56 

NDMI 

(M. 9/10) 

0.62 0.50 0.58 0.45 

 

Table 3. The results from a correlation analysis with each of the 

indices. The summary statistics are similar to Figure 9 with only 

the inclusion of mean values from each set of months (M.). 

 

Moisture was consistently the strongest variable affecting the 

SUHI residuals over every land cover. NDMI is considered as a 

cooling index useful for regulating thermal configuration with 

strong greening properties (Zhu et al. 2019). With a consistent 

moisture distribution throughout the study area, NDMI is 

capable of retaining a strong correlation with every bio-

productive land cover throughout every season. Amongst all 

indices, its correlation with urban pixels was the strongest due 

to Milton’s low-density residential distribution. Built-up 

pervious land in the form of lawns, parks, and recreational areas 

increase abilities for moisture retention. 

 

The land cover which obtained the weakest correlation results 

with both vegetation indices was urban. This is due to the 

distribution of impervious surfaces, contrasting vegetation land 

covers and their abilities to retain moisture and reflect more 

infrared radiation, which are important in all three indices. The 

inclusion of built-up pervious land covers (in reference to urban 

recreation areas, such as golf courses or playing fields (Science 

and Research Branch of the Ministry of Natural Resources and 

Forestry 2019)) may be the primary contributor to the positive 

correlations. Additionally, the low-density structure of the 

residential neighbourhoods allow for a reduced distribution of 

impervious surfaces and increased abilities for infrared 

reflection, sparse vegetation distribution, and moisture 

retention. As a result, as noted in Table 3, urban surfaces 

correlate relatively well with NDVI in summer and autumn. 

 

Agricultural surfaces dominated the correlations with NDVI and 

NDMI with mean correlation coefficients as high as 0.64 and 

0.74 within the summer months respectfully. With EVI, the 

forested and wetlands surfaces obtained a marginally higher 

correlation, with April and May results deviating the most in 

Table 3. Considering that LST generally trends in contrast to 

NDVI and EVI (Alademomi et al. 2020), the stronger 

correlation with EVI is due to the denser vegetation and reduced 

soil reflectance while agriculture is distributed more dominantly 

and performs better with NDVI. 
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5. CONCLUSION 

The two common methods for analysing the footprint of a UHI 

was adapted for a rapidly urbanizing low-density urban area in 

Canada using LST acquired from Landsat 7 ETM+. Both 

UHIFP and SUHI models were used for a comparison analysis 

and to determine the primary factors influencing the results. 

These techniques allowed for an enhanced comprehension of 

the effects that the local UHI has upon rural (or exurban) 

vegetation within differing bio-productive land covers with 

varying degrees of distance applied.  

 

Milton, a secondary (or suburban) city, was determined to have 

an average rural UHIFP 1.4 times the size of the urban centre. It 

is smaller than previous research due to the study site’s dwarfed 

size compared to previous studies, reduced population density, 

its proximity to larger urban centres at its periphery which 

influence the rural reference LST, and the rural vegetation 

distribution. Additionally, the use of 5 years mean imagery for 

Landsat 7 ETM+ provided an effective and consistent method 

for calculating the UHIFP with a 16-days temporal resolution. 

 

Despite agricultural surfaces being the most dominantly 

distributed throughout the region, urban land covers dominated 

influencing the UHIFP and SUHI models. It mainly followed 

the SUHI Gaussian surface and exhibited increased warming 

effects outside of the UHIFP. Agricultural surfaces achieved 

their greatest cooling effects in the area 2.5 times the urban 

centre area. Alternatively, densely vegetated land covers 

maximized their cooling abilities within the rural area 1.5 times 

the size of the urban centre. 

 

NDMI provided the strongest correlations with every land cover 

throughout every part of the growing season. As a result, 

moisture may be more important to the spatial pattern of the 

UHI and its footprint than vegetation health. 

 

The results from this analysis describe the impact which small 

scale urban expansion poses for surrounding rural 

environments. The plethora of proximate agricultural surfaces 

and distribution of dense vegetation presents Milton’s 

surroundings as an ideal representation for suburban 

communities across Canada and abroad. Conclusions made here 

are very useful for city planners, engineers, and geographers in 

their abilities to predict the impact of low-density urban 

expansion and its spatiotemporal influence. The strong 

correlations urban residuals found with NDMI and NDVI 

defines how the increased vegetation distributions in low-

density neighbourhoods and urban centres influences the local 

UHI and rural vegetation. 
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