Academic Calendar 2024-2025

Search Results

Search Results for "CHEE 311"

CHEE 311  Fluid Phase and Reaction Equilibrium  Units: 3.50  
This course is concerned with the application of thermodynamics to practical problems of the chemical industry. Emphasis is placed on the study of phase equilibrium, including vapour-liquid equilibrium and liquid-liquid equilibrium. Contemporary methods of calculating the thermodynamic properties of non-ideal vapours and liquids will be presented and applied. The principles of chemical reaction equilibrium will also be studied. The design component of the course will require students to perform theoretical vapour-liquid equilibrium calculations and recommend proper operating conditions for a single-stage unit (flash drum) that separates a non-ideal binary mixture.
(Lec: 3, Lab: 0, Tut: 0.5)
Requirements: Prerequisites: CHEE 210 Corequisites: Exclusions:   
Offering Term: F  
CEAB Units:    
Mathematics 0  
Natural Sciences 0  
Complementary Studies 0  
Engineering Science 30  
Engineering Design 12  
Offering Faculty: Smith Engineering  

Course Learning Outcomes:

  1. Identify and understand the principles of chemical equilibrium thermodynamics to solve multiphase equilibria and chemical reaction equilibria.
  2. Analyze the conditions associated with ideal and non-ideal vapour-liquid systems at equilibrium through the construction and interpretation of phase diagrams for ideal and non-ideal binary mixtures.
  3. Use empirical correlations and experimental data to evaluate thermodynamic quantities that relate to the vapour-liquid or liquid-liquid equilibria of ideal and non-ideal chemical mixtures.
  4. Determine equilibrium constants for chemical reactions and equilibrium point compositions for multiple reaction systems.
  5. Solve single and multistage separation processes involving non-ideal chemical mixtures using numerical methods and simulations and recommend appropriate operating conditions.
  

Chemical Engineering

http://queensu-ca-public.courseleaf.com/graduate-studies/programs-study/chemical-engineering/
The Chemical Engineering department is based in Dupuis Hall, which is a multi-purpose facility with extensive research laboratories, and large-and small-group teaching classrooms. Department researchers in the bioengineering and bioremediation fields also have laboratory facilities in the multi-disciplinary Biosciences complex, Nicole Hall, and in the Centre for Health Innovation at the Kingston Health Sciences Centre. We are a medium-sized department, with sufficient size to ensure a breadth of research activities, yet small enough to foster a cohesive learning environment. Research serials and books are housed in the Engineering and Science Library, and a variety of search and document delivery facilities are available on-line. Research is being conducted in the fields of materials and interfaces, bioengineering, sustainable energy sources, and data analytics, optimization and control. Facilities within the polymer and reaction engineering field include a variety of bench and pilot scale polymerization reactors (gas-phase polyolefin, solution and emulsion free-radical, living-radical and condensation polymer systems), polymer processing equipment (twin-screw extruder, Haake internal mixer), rotational and capillary rheometers, fuel cell equipment, and the biomedical research facilities include cell and tissue culture labs. The Chemical Engineering Analytical Facility (ChEAF) was established for the measurement of polymeric physical, thermal and structural properties, and is supported by the Senior Research Engineer. Physical measurements and chemical analyses are carried out using a variety of instruments such as gas chromatographs, elemental analyzer, HPLCs, gel permeation chromatographs, BET surface area analyzer, capillary hydro-dynamic fractionation submicron particle size analyzer, spectrophotometers, IR, FTIR, GC mass spectroscopy, and also by means of novel probes based in light scattering, absorption and fluorescence. Research computations are conducted using a wide range of symbolic computation, numerical analysis, statistical analysis and process simulation software.  The research laboratories are supported by two departmental laboratory technologists while the computing facilities are supported by Smith Engineering Information Technology Group.