Taking a "v" Look: Studying Solar and Terrestrial Neutrinos with Borexino

Departmental Colloquium, Queen's University November 30th 2012

Alex Wright Institute of Particle Physics & Queen's University

Outline

 Neutrinos and neutrino oscillations

Borexino

- Solar neutrino results
- Geo-neutrinos
- Outlook

Neutrinos

- Neutral fundamental fermions
- Weakly interacting
 - Typical cross sections of order 10⁻⁴⁵cm²
- Three neutrino "flavours"
 - Defined by interactions
 with charged leptons

Neutrinos From the Sun

p-p Solar Fusion Chain **CNO Solar Fusion Cycle** $p + p \rightarrow {}^{2}H + e^{+} + v_{e} \quad p + e^{-} + p \rightarrow {}^{2}H + v_{e}$ $^{12}C + p \rightarrow ^{13}N + \gamma$ $^{13}N \rightarrow ^{13}C + e^+ + v_o$ $^{2}H + p \rightarrow ^{3}He + \gamma$ $^{13}C + p \rightarrow ^{14}N + \gamma$ ³He + ³He \rightarrow ⁴He + 2 p ³He + p \rightarrow ⁴He + e⁺ + ν_e $^{14}N + p \rightarrow ^{15}O + \gamma$ ³He + ⁴He \rightarrow ⁷Be + γ $^{15}O \rightarrow ^{15}N + e^+ + v_o$ ⁷Be + e⁻ \rightarrow ⁷Li + γ + ν_e ⁷Be + p \rightarrow ⁸B + γ ¹⁵N + p \rightarrow ⁺¹²C + ⁴He $^{8}B \rightarrow 2 \,^{4}He + e^{+} + v_{e}$ $^{7}Li + p \rightarrow 2 ^{4}He$

Neutrinos From the Sun

The Solar Neutrino Problem

Bahcall-Serenelli 2005 [BS05(OP)]

The Solar Neutrino Problem

Neutrino Oscillations

- Neutrino flavour and mass eigenstates "misaligned"
- Related by the PMNS matrix
 - Unitary mapping with 3 mixing angles (θ_{12} , θ_{13} , θ_{23}), perhaps two Majorana phases (α_1 , α_2), and one CP violating phase (δ)

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$

Neutrino Oscillations

- Producing a neutrino in a flavour eigenstate produces a superposition of mass eigenstates
- Phase differences acquired in mass eigenstate propagation change apparent flavour content:

$$P_{ee} = 1 - \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2\left(\frac{\Delta m_{21}^2}{4\overline{p}}L\right)$$
$$- \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2\left(\frac{\Delta m_{31}^2}{4\overline{p}}L\right)$$
$$- \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2\left(\frac{\Delta m_{32}^2}{4\overline{p}}L\right)$$

Symmetry Magazine

Oscillation probabilities for an initial electron neutrino

Neutrino Oscillations

- Producing a neutrino in a flavour eigenstate produces a superposition of mass eigenstates
- Phase differences acquired in mass eigenstate propagation change apparent flavour content
- In solar neutrinos we see a phase averaged survival probability:

$$P_{ee} = \cos^4(\theta_{13}) \left(1 - \frac{1}{2} \sin^2(2\theta_{12}) \right) + \sin^4(\theta_{13}) \\ \sim \left(1 - \frac{1}{2} \sin^2(2\theta_{12}) \right) \qquad (\theta_{13} = 0)$$

Symmetry Magazine

 When neutrinos propagate in matter, charged current interactions add an additional term to v_e flavour in Hamiltonian mass matrix:

$$\left(\begin{array}{cc} -\frac{\Delta m_{12}^2}{4E}\cos 2\theta_{12} + \sqrt{2}G_F N_e & \frac{\Delta m_{12}^2}{4E}\sin 2\theta_{12} \\ \frac{\Delta m_{12}^2}{4E}\sin 2\theta_{12} & \frac{\Delta m_{12}^2}{4E}\cos 2\theta_{12} \end{array}\right)$$

 Mikheyev-Smirnov-Wolfenstein effect: as neutrinos propagate out of the sun, the matter effect can lead to a resonant enhancement of the transition probability

MSW Oscillation Regimes

MSW Oscillation Regimes

In these regimes, P_{ee} depends only on θ_{12} , not on the mass splitting or the details of the neutrino-matter interaction

MSW Oscillation Regimes

Look in "transition region" to confirm MSW and that we know what is going on!

Possible New Physics in Transition Region

Constraints on Transition Region Without Borexino

Subtractions required in interpreting the radiochemical results mean that the data points are (anti-) correlated. *Real-time measurements needed in the transition region*.

Borexino: Real-time Detection Below 50 keV

The Borexino Detector

Laboratori Nazionali del Gran Sasso

Borexino Collaboration

Astroparticle and Cosmology Laboratory – Paris, France INFN Laboratori Nazionali del Gran Sasso – Assergi, Italy INFN e Dipartimento di Fisica dell'Università – Genova, Italy INFN e Dipartimento di Fisica dell'Università– Milano, Italy INFN e Dipartimento di Chimica dell'Università – Perugia, Italy Institut fur Experimentalphysik – Hamburg, Germany Institute of Physics, Jagellonian University – Kracow, Poland Instito de Fisica Corpuscular – Valencia, Spain 🌉 Joint Institute for Nuclear Research – Dubna, Russia Kiev Institute for Nuclear Research – Kiev, Ukraine NRC Kurchatov Institute – Moscow, Russia Max-Planck Institute fuer Kernphysik – Heidelberg, Germany Princeton University – Princeton, NJ, USA St. Petersburg Nuclear Physics Institute – Gatchina, Russia Technische Universität – Muenchen, Germany University of Massachusetts at Amherst, MA, USA Virginia Polytechnic Institute – Blacksburg, VA, USA

Detection Principle

- Organic scintillator (pseudocumene + PPO) produces light when excited by charged particles
- ~12,000 photons/MeV, of which ~500 photons/ MeV are detected by the photomultiplier tubes
 – Can detect events depositing < 50 keV
- Calorimetric measurement + pulse shape
 - Event energy from number of photons
 - Event position from photon time-offlight

Neutrino Detection

- Neutrinos interact via elastic scattering with electrons
 - Sensitive to all neutrino species, but cross section is 4-7 times larger for $v_{\rm e}$ than $v_{\rm \mu,\tau}$
 - Detect scintillation from the recoiling electron

Central Challenge: Background Reduction

Internal Radioactivity

traces of radioisotopes in the scintillator (U/Th,⁴⁰K)

External Gamma-Rays

from buffer, steel sphere, PMT glass (⁴⁰K, ²⁰⁸Tl ...)

Cosmic Muons

Cosmogenics

neutrons and radionuclides from muon-spallation and hadronic showers

Fast Neutrons

from external muons

Central Challenge: Background Reduction

Borexino achieved unprecedented low levels of internal background.

The Counting Test Facility III

Contaminant	Source	Normal Conc.	Borexino Achieved	Reduction Method
¹⁴ C	Scintillator	10 ⁻¹² g/g	10 ⁻¹⁸ g/g	Old oil
²³⁸ U	Dust	10 ⁻⁶ g/g	~5x10 ⁻¹⁸ g/g	Purification
²³² Th	Dust	10 ⁻⁶ g/g	~4x10 ⁻¹⁸ g/g	Purification
⁸⁵ Kr	Air	1 Bq/m³	~2x10 ⁻³ Bq/m ³	LAKN
²²² Rn	Air	20-100 Bq/m ³	<10 ⁻⁶ Bq/m ³	Air exclusion
K _{nat}	Dust	~10 ⁻³ g/g	<2x10 ⁻¹⁵ g/g	Purification
μ	Cosmic	200 s ⁻¹ m ⁻²	10 ⁻¹⁰ s ⁻¹ m ⁻²	Underground, active veto

Borexino Neutrino Results

- ⁷Be Flux
 - (±30%) Phys. Lett. B **658**:101 (2008).
 - (±10%) Phys. Rev. Lett. **101**:091302 (2008).
 - (±5%) Phys. Rev. Lett. **107**:141302 (2011).
- ⁷Be Day-Night Asymmetry
 - Phys. Lett. B 707:22 (2012).
- ⁸B Flux + Spectrum (T_{eff} > 3.0 MeV)
 Phys. Rev. D 82:033006 (2010).
- *pep* and CNO flux
 - Phys. Rev. Lett. **108**:051302 (2012).
- Geo-neutrinos

- Phys. Lett. B 687:299-304 (2010).

- Solar anti-neutrinos
 - Phys. Lett. B **696**:191-196 (2011).
- CNGS neutrino time-of-flight
 - Phys. Lett. B 716:401 (2012)

Expected ⁷Be signal

Expected ⁷Be signal

Fiducial mass = 75.6 tonnes

Fiducial mass = 75.6 tonnes

Alpha Pulse Shape Discrimination

Normalized Scintillation Pulse Shapes

Expected ⁷Be signal

⁷Be Signal Extraction

- Fit the observed energy spectrum with the expected signal and background shapes to determine the ⁷Be flux
- Different fit configurations used to estimate uncertainties

Precision ⁷Be Flux Result

(Phys. Rev. Lett. 107:141302 (2011))

Borexino 862 keV ⁷Be counting rate: 46.0 ± 1.5_{stat} + 1.5/- (d 100T)

 $\Rightarrow \Phi_{7Be} = (4.84 \pm 0.24) \times 10^9 \text{ cm}^{-2}\text{s}^{-1} \implies P_{ee}(862 \text{ keV}) = 0.51 \pm 0.07$

R. Saldanha, Ph.D. Thesis, Princeton (2011)

Precision ⁷Be Flux Result

(Phys. Rev. Lett. 107:141302 (2011))

Borexino 862 keV ⁷Be counting rate: 46.0 ± 1.5_{stat} + 1.5_{stat} /(d 100T)

 $\implies \Phi_{7Be} = (4.84 \pm 0.24) \times 10^9 \text{ cm}^{-2} \text{s}^{-1} \implies P_{ee}(862 \text{ keV}) = 0.51 \pm 0.07$

Systematic Uncertainties		
Trigger Efficiency	0.1%	
Scintillator Density	0.05%	
Livetime	0.04%	
Cut Sacrifice	0.1%	
Fiducial Mass	+0.5 % -1.3 %	
Energy Scale	2.7%	
Fit Methods	2.0%	
Total	+3.4% -3.6	

Precision ⁷Be Flux Result

Significantly improved constraint on low energy P_{ee}.

⁷Be Day-Night Effect

- As solar neutrinos (diabatically) enter the earth, v_e can be coherently regenerated
- Size of the effect depends on mixing parameters, can cause the effective day and night neutrino fluxes to be different

Model	Predicted A _{nd} (862 keV)
LMA	<0.001
LOW	0.11 - 0.80
MaVaN	~0.20

⁷Be Day-Night Asymmetry Search

(Phys. Lett. B 707:22 (2012))

A_{dn}(862 keV): 0.001 ± 0.012_{stat} ±0.007_{sys}

Fit for ⁷Be in the difference between the day and night spectra to obtain the most stringent limit.

Source of error	Error on A_{dn}
Live-time	$< 5 \cdot 10^{-4}$
Cut efficiencies	0.001
Variation of ²¹⁰ Bi with time	± 0.005
Fit procedure	± 0.005
Total systematic error	0.007

⁷Be Day-Night Asymmetry Search

A_{dn}(862 keV): 0.001 ± 0.012_{stat} ±0.007_{sys}

Source of error	Error on A_{dn}
Live-time	$< 5 \cdot 10^{-4}$
Cut efficiencies	0.001
Variation of ²¹⁰ Bi with time	± 0.005
Fit procedure	± 0.005
Total systematic error	0.007

⁷Be Day-Night Asymmetry Search

 $A_{dn}(862 \text{ keV}): 0.001 \pm 0.012_{stat} \pm 0.007_{sys}$

Source of error	Error on A_{dn}
Live-time	$< 5 \cdot 10^{-4}$
Cut efficiencies	0.001
Variation of ²¹⁰ Bi with time	± 0.005
Fit procedure	± 0.005
Total systematic error	0.007

"Into the Muck": pep and CNO Neutrinos

pep Neutrinos

First direct look at solar p-p fusion. Precision test of Standard Solar Model and oscillations. Ideal energy to probe transition region.

CNO Neutrinos

First direct evidence for CNO cycle.

Measure solar metallicity.

¹¹C Suppression

Three-Fold Coincidence

- Most ¹¹C produced via ${}^{12}C \rightarrow {}^{11}C + n$
 - Delayed neutron capture signal identifies when and where ¹¹C was produced
 - Special triggers and analogue DAQ system to identify muon + neutron

The ~125 muon-neutron coincidences/day can be vetoed without excessive loss of live time.

Three-Fold Coincidence

Remove 91% of ¹¹C and 51.5% of livetime.

e⁺/e⁻ Pulse Shape Discrimination

(PRC 83:015522 (2011))

e⁺/e⁻ Pulse Shape Discrimination

Boosted decision tree (BDT) discrimination parameter from pulse shape information.

pep/CNO Fit

- Fit in energy, radius, and BDT
- Radial and BDT distributions are energy dependent
- Simultaneously fit the TFC "signal-like" and "backgroundlike" spectra
 - Double background statistics

pep/CNO Fit

- Fit in energy, radius, and BDT
- Radial and BDT distributions are energy dependent
- Simultaneously fit the TFC "signal-like" and "backgroundlike" spectra
 - Double background statistics

pep Result

(Phys. Rev. Lett. 108:051302 (2012))

Borexino *pep* counting rate: $3.1 \pm 0.6_{stat} \pm 0.3_{sys}$ /(d 100T)

 $\Phi_{pep} = (1.6 \pm 0.3) \times 10^8 \text{ cm}^{-2} \text{s}^{-1} \implies P_{ee}(1.44 \text{ MeV}) = 0.62 \pm 0.17$

pep Result

Borexino pep counting rate: $3.1 \pm 0.6_{stat} \pm 0.3_{sys}$ /(d 100T)

We have succeeded in extracting the pep signal from the background – more precise results possible in the future!

CNO Limit (Phys. Rev. Lett. 108:051302 (2012))

Borexino CNO counting rate: < 7.9 (<7.1_{stat only}) /(d 100T) (95% C.L)

< 7.7 x 10⁸ cm⁻²s⁻¹ (< 1.5 x high Z SSM)</p>

Sensitivity approaching predicted rates: most stringent limit to date. Result consistent with both high and low metallicity models.

Geo-Neutrinos

- Antineutrinos from β⁻ decay of K, U and Th in the earth's mantle and crust
- Models suggest that these decays are responsible for 40-100% of the earth's heat Heat Flow

Not well known!

 Use geoneutrinos to measure the earth's radiogenic heat and chemical composition

Geophysics with neutrinos!

Detecting Geo-Neutrinos

- Expected rate in Borexino is tiny: <5/100T/yr
- Detection via $\overline{v}_e + p \rightarrow n + e^+$
 - Delayed co-incidence gives powerful background rejection

 $- E_{e+} = E_v - 0.782 \text{ MeV}$

 Separate geo-neutrinos from reactor anti-neutrinos by energy spectrum

Detecting Geo-Neutrinos

- Expected rate in Borexino is tiny: <5/100T/yr
- Detection via $\overline{v}_e + p \rightarrow n + e^+$
 - Delayed co-incidence gives powerful background rejection
 - $E_{e+} = E_v 0.782 \text{ MeV}$
- Separate geo-neutrinos from reactor anti-neutrinos by energy spectrum

Geo-neutrinos in Borexino

(Phys. Lett. B 687:299-304 (2010))

Borexino Geo-Neutrino Rate: 3.9^{+1.6}_{-1.3} ev/100T/yr

Delayed Co-incidence Backgrounds

Source	Background
	$[\text{events}/(100 \text{ ton} \cdot \text{yr})]$
⁹ Li ^{_8} He	0.03 ± 0.02
Fast <i>n</i> 's (μ 's in WT)	< 0.01
Fast <i>n</i> 's (μ 's in rock)	< 0.04
Untagged muons	0.011 ± 0.001
Accidental coincidences	0.080 ± 0.001
Time corr. background	< 0.026
(γ,n)	< 0.003
Spontaneous fission in PMTs	0.0030 ± 0.0003
(α, \mathbf{n}) in scintillator	$0.014 {\pm} 0.001$
(α, \mathbf{n}) in the buffer	< 0.061
Total	$0.14{\pm}0.02$

Geo-neutrinos in Borexino

(Phys. Lett. B 687:299-304 (2010))

Borexino Geo-Neutrino Rate: 3.9^{+1.6}_{-1.3} ev/100T/yr

McDonough and Dye, SNOLAB workshop, May 2012

Borexino Future

- Procedures to (further!) purify the scintillator underway since July 2010
 - No sign of ⁸⁵Kr since
 January 2011
 - Moderate reduction in ²¹⁰Bi
- Operations continue, with aim of further reducing ²¹⁰Bi, perhaps ²¹⁰Po
- Borexino will continue to take solar neutrino data for >3 more years

Increased statistics + lower backgrounds = improved measurements of the low energy solar neutrinos and geo-neutrinos.

Sterile Neutrino Search

- Several experiments (LSND, "reactor anti-neutrino anomaly," "gallium anomaly," CMB) give weak evidence for a 4th, sterile, neutrino
- Deploying a strong (10 MCi) electron capture neutrino source near Borexino would allow us to look for oscillations within the detector!

Summary

- Unprecedented radiopurity and new background suppression techniques give Borexino unique capability
 - Precision measurement of the ⁷Be solar neutrino rate
 - First direct studies of the pep and CNO neutrino
 - First detection of geoneutrinos
- Repurification and new opportunities promise even more exciting results in the future!

