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Objective

Compute a vibrational spectrum by solving the vibrational
Schroedinger equation

Ĥψk = Ekψk

Ĥ = K̂ + V̂ .

Represent wavefunctions with basis functions

ψk(q) =
∑
n

ckn fn(q)

Warning : I am solving the VIBRATIONAL
Schroedinger equation
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General potentials

In general, the potential, V̂ , is a complicated function. When it
cannot be represented as

a sum-of-products

a sum of terms with one, two, etc coordinates

we have used two methods :

one with a Smolyak quadrature

one based a Smolyak-inspired collocation
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The variational (Galerkin) method is common in chemistry

represent wavefunctions with basis functions

ψk(q) =
∑
n

ckn fn(q)

multiply on the left with fm(q), integrate to obtain a matrix
eigenvalue problem

compute eigenvalues and eigenvectors of the Hamiltonian
matrix
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Basis sets and quadrature grids are huge

Often one uses product basis functions :

fk1,k2,··· = φk1(r1)φk2(r2) · · ·φkN (θ1) · · ·

Between 10 and 100 1-D functions required for each coordinate.

If n basis functions are required for each coordinate and there are
D coordinates then the size of the basis is nD .

To compute vibrational levels > 103N−6 multi-d basis functions are
required.
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Does this poor scaling matter ?

n1d ≈ 10

H2O
Size of matrix 103

CH2O
Size of matrix 106

C2H4

Size of matrix 1012

The curse of dimensionality
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To make an effective variational method one must reduce
the size of the basis and the quadrature grid

It is common to use product basis functions that are eigenfunctions
of a zeroth-order Hamiltonian,

H = H0 + ∆

H0 is a sum of 1d Hamiltonians (separable).

One can remove basis functions with large zeroth-order energies.

If all the 1d Hamiltonians are identical one simply removes basis
functions for which ∑

c

nc > b
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Full basis for a 2d problem
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Pruned basis for the 2d problem
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Better than the hyperbolic cross

If I want the lowest eigenvalues of H and if ∆ is small then
the

∑
c nc ≤ b basis must be better

Some of the eigenfunctions I desire have nodes in many (all)
coordinates
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One can do better

The simplest basis pruning condition is

n1 + · · ·+ nD ≤ b.

We have also used the pruning condition,

α1n1 + · · ·+ αDnD ≤ b.

We have also used more general pruning conditions of the form

g1(n1) + · · ·+ gD(nD) ≤ b ,

where g c(n) is an arbitrary monotonic function of n, designed to
include basis functions coupled by the largest terms in the
Hamiltonian.
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If 3N − 6 = 15 and 15 basis functions are used for each coordinate
then the size of the direct product basis is 4× 1017.

By discarding all functions for which
∑

c nc > b = 15 the size of
the basis is reduced to 7.7× 107.

Basis vector : 3× 109 GB → 0.6 GB
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It is also possible to reduce the size of the quadrature grid

For a 12D problem, a direct product quadrature has ∼ 1512

points. Storing one vector requires about 106 GB.

We must find a smaller grid with enough structure that we
can efficiently evaluate matrix-vector products

13 / 44



Smolyak grids

The Smolyak quadrature equation for integrating a function
f (x1, x2, · · · , xD) can be written as a sum of D-dimensional
product quadrature grids,

S(D,H) =
∑

i1+i2+···≤H
Ci1,...,iD [Q i1(x1)⊗ · · · ⊗ Q iD (xD)],
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Crucial implementation details

We use nested grids and obviate the need to sum over
contributing grids,

S(D,H) =
∑

f (i)≤H

Ci1,...,iD [Q i1(x1)⊗ · · · ⊗ Q iD (xD)],

With nested points a Smolyak quadrature can be written,

S(6,H)f (q1, q2, q3, q4, q5, q6)

=
∑N1

k1

∑N2
k2

∑N3
k3

∑N4
k4

∑N5
k5

∑N6
k6

w(k6, k5, k4, k3, k2, k1)

×f (qk11 , q
k2
2 , q

k3
3 , q

k4
4 , q

k5
5 , q

k6
6 ) ,

where

w(k6, · · · , k1) =
∑

f (i)≤H

Ci1,··· ,i6
i1wk1 · · · iDwk6 ,
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We exploit the structure of the basis and the grid to
evaluate matrix-vector products by doing sums sequentially

v2(n′3, n
′
2, n
′
1) =

∑N1
k1=1 Tn′1k1

∑N2
k2=1 Tn′2k2

∑N3
k3=1 Tn′3k3

w(k3, k2, k1)V (qk11 , q
k2
2 , q

k3
3 )∑nmax

3
n3=0 Tn3k3

∑nmax
2

n2=0 Tn2k2

∑nmax
1

n1=0 Tn1k1

v1(n3, n2, n1) ,

where Tnk = φn(qk)

Crucial advantage that there is no sum over
contributing grids
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Smolyak quadratures adapted to our bases work well for a
12-D problem

Grid size ∼ 5.7× 1013 → 8.5× 106

memory cost 500 TB → 0.07 GB

17 / 44



The variational method limits one’s choices

coordinates and (orthogonal) basis functions are chosen so
that matrix elements of the kinetic energy operator (KEO)
can be calculated exactly (analytically)

a quadrature is chosen that is exact for all overlap matrix
elements

one solves HU = UE

there are no efficient iterative eigensolvers for
HU = SUE
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We have also used collocation

Collocation obviates

integrals

the need for basis functions with which matrix elements of the
KEO are exact

the need for orthogonal basis functions

Collocation has the advantage that as the basis improves, the
choice of the points becomes irrelevant.

19 / 44



What is collocation ?

Apply Ĥ − Ek to

ψk(q) =
∑
n

ukn fn(q)

and determine the ukn by demanding that the Schroedinger
equation be satisfied at a set of points, i.e. solve

(T + VB)U = BUE ,
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Two drawbacks of established collocation methods

B 6= I
and it is necessary to solve a generalized eigenvalue problem

The H and B matrices of the collocation eigenvalue problem,
HU = BUE
are not symmetric
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Overcoming the drawbacks

B 6= I makes collocation almost unusable (when the number of
basis functions is larger than about 50’000).
There are good tools for computing eigenvalues and eigenvectors
of a nonsymmetric eigenvalue problem, if B = I

In this talk I present a new collocation method that
obviates the need to solve a generalized eigenvalue
problem

A new tool for solving the Schroedinger equation.
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Avoiding a generalized eigenvalue problem

In 1-D this is easily accomplished by using as basis functions
Lagrange-like basis functions that are one at one of the collocation
points and zero at all the others.

( B = I because fb(xa) = δab)

23 / 44



1-D Lagrange-like functions

Functions that span the same space as the first m harmonic
oscillator functions,

aj(x) = exp

(
−x2 + x2j

2

)
m∏

i = 1
i 6= j

(
x − xi
xj − xi

)
,

Functions that spans the same space as the first m 1-D
wavefunctions, φq,

amk (x) =
∑
q

φq(x)ckq ,

where
∑m−1

q=1 Mk′qc
k
q = δk,k′ with Mk′q = φq(xk′).
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Multidimensional collocation

The key idea is not to apply Ĥ − En to a basis representation of a
wavefunction, but to a Smolyak or sparse-grid interpolant.

I (D,H)Φn(x1, x2, · · · , xD) =
∑

g(i1,i2,··· ,iD)≤H

Ci1,i2,··· ,iD

×U i1(x1)⊗ U i2(x2)⊗ · · ·U iD (xc)Φn(xk1 , xk2 , · · · , xkD )

=
∑

g(i1,i2,··· ,iD)≤H

Ci1,i2,··· ,iD

×
mi1∑
k1=1

mi2∑
k2=1

· · ·
miD∑
kD=1

Φn(x i1k1 , x
i2
k2
, · · · , x iDkD )ai1k1(x1)ai2k2(x2) · · · aiDkD (xD).

Ci1,i2,··· ,iD coefficients are the same as those used with Smolyak
quadrature.
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Multidimensional collocation

The interpolant is built using multiple sets of nested points,

xc1 for ic = 1,

xc1 , x
c
2 for ic = 2,

xc1 , x
c
2 , x

c
3 for ic = 3,

xc1 , x
c
2 , x

c
3 , x

c
4 for ic = 4,

...

xc1 , x
c
2 , · · · , xcK−1, xcK for ic = K .
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Multidimensional collocation

Again, one can use

g(i1, i2, · · · , iD) = i1 + i2 + · · ·+ iD .

Smolyak interpolation is usually used with piecewise-linear basis
functions. Instead, we use Lagrange-like functions that span the
same space as a set 1-D eigenfunctions.
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Requiring that the Schroedinger equation be satisfied at a point on
the Smolyak grid means imposing∑

g(i1,i2,··· ,iD)≤H

Ci1,i2,··· ,iD

×
mi1∑
k1=1

mi2∑
k2=1

· · ·
miD∑
kD=1

K̂Φn(x i1k1 , x
i2
k2
, · · · , x iDkD )ai1k1(xk′

1
)ai2k2(xk′

2
) · · · aiDkD (xk′

D
)

+Vxk′
1
,xk′

2
,··· ,xk′

D
Φn(xk′

1
, xk′

2
, · · · , xk′

D
) = EnΦn(xk′

1
, xk′

2
, · · · , xk′

D
) .
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We convert this into a matrix eigenvalue problem

(T + V)U = UE,

We do not construct T ; V is diagonal.

Elements of the eigenvectors are values of wavefunctions at
points.

As H is increased, diagonal elements of E and columns of U
converge to exact energies and wavefunction values at the
Smolyak grid points.

The number of points on the Smolyak grid is equal to the
number of basis functions.
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Matrix-vector products

Potential matrix-vector products are trivial.
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Kinetic energy matrix-vector products

K =
3N−6∑
k,l

(
Gkl

∂

∂Qk

∂

∂Ql

)
+

3N−6∑
k

(
Hk

∂

∂Qk

)
+ V ′

Apply the KEO term by term

Cost of computing the spectrum does not depend on the form
or complexity of the functions Gkl and Hk
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Avoid Ci1,i2,··· ,iD

It is important not to use

∑
g(i1,i2,··· ,iD)≤H

Ci1,i2,··· ,iD

×
mi1∑
k1=1

mi2∑
k2=1

· · ·
miD∑
kD=1

Φn(x i1k1 , x
i2
k2
, · · · , x iDkD )ai1k1(x1)ai2k2(x2) · · · aiDkD (xD).

sum over contributing grids

Ci1,i2,··· ,iD makes efficient sequential summation impossible
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Rather than writing an interpolated wavefunction as a sum over
points,

I (D,H)Φn(x1, x2, · · · , xD)

=
∑

g(i1,i2,··· ,iD)≤H

Ci1,i2,··· ,iD

×U i1(x1)⊗ U i2(x2)⊗ · · ·U iD (xc)Φn(xk1 , xk2 , · · · , xkD )

where U ic is a 1-D interpolant defined by

f (xc) ≈ U ic f (xc) =

mic∑
kc=1

f (xkc )aickc (xc).

it can be written as

I (D,H)Φn(x1, x2, · · · , xD)

=
∑

g(n1+1,n2+1,··· ,nD+1)≤H

nC or
n1,··· ,nD ϕn1(x1)ϕn2(x2) · · ·ϕnD (xD)
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When the interpolated wavefunction is written as a linear
combination of products of ϕnc (xc), the KEO can be applied
by differentiating ϕnc (xc).

This is more efficient than applying the KEO to the point
form of the interpolated wavefunction.

For chemists : it is easier to apply the KEO to an FBR
representation of the wavefunction than to a DVR
representation of the wavefunction.

To use this idea one must obtain nC or
n1,··· ,nD from

Φn(xk1 , xk2 , · · · , xkD )

This is not simple because neither the basis nor the grid is a
direct product (both are direct products in a standard
pseudo-spectral calculation).
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How to do the transformation

We use a recursive formulation

(everything here for the simple case
g(i1, i2, · · · , iD) = i1 + i2 + · · ·+ iD ≤ H )

I (D,H) =
H−D+1∑
p=1

I (D − 1,H − p)(Up − Up−1).

For example, in six dimensions, the 6D Smolyak interpolant is

I (6,H) =
H−5∑
i6=1

I (5,H − i6)[U i6(x6)− U i6−1(x6)] .
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Writing the aickc in terms of ϕnc (xc)

aickc (xc) =

nmax
c (ic)∑
nc=0

B ic
kc ,nc

ϕnc (xc),

where

B ic = (P ic )−1

P ic
nc ,kc

= ϕnc (xkcc )
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∆B ic
kc ,nc

factors are applied sequentially for all the coordinates

Rather than using ϕnc (xc), it is better to use ϕ̃nc (xc) that
span, level by level, the same space(s) and defined so that
ϕnc (xkcc ) =0 when kc < nc − 1

ϕ̃nc (xc) =

nmax
c −1∑
mc=1

Ãnc ,mcϕmc (xc) + ϕnc (xc),

many ∆B̃ ic
kc ,nc

are zero

Sums are evaluated sequentially, exploiting the structure of the
pruned basis and the Smolyak grid. The cost scales as nD+1.
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Test calculations

CH2O with normal coordinates

HONO with bond length and bond angles coordinates

Cut eigenfunctions for 1-D bases
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CH2O

For CH2O, the 100 lowest levels on the PES of Martin et al. are
accurately calculated with

H = 25 and 177’100 points.

For HONO, the 330 lowest levels on the PES of Richter et al. are
accurately calculated with

H = 27 and 2× 106 points.

HONO is a harder problem because it is a double-well potential.

Errors ∼ 0.3 cm−1 (one part in 104)
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Points of possible interest to mathematicians

General pruning of the basis and the grid,

g1(n1) + · · ·+ gD(nD) ≤ b ,

In the Galerkin case, obviate the sum over grids by using
Smolyak weights

w(k6, · · · , k1) =
∑

f (i)≤H

Ci1,··· ,i6
i1wk1 · · · iDwk6 ,
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Points of possible interest to mathematicians

Rather than transforming to the “nodal” basis and using the
“unidirectional“ principle, we do sums sequentially. There is no
need for the operator to be a sum of products

v2(n′3, n
′
2, n
′
1) =

∑N1
k1=1 Tn′1k1

∑N2
k2=1 Tn′2k2

∑N3
k3=1 Tn′3k3

w(k3, k2, k1)V (qk11 , q
k2
2 , q

k3
3 )∑nmax

3
n3=0 Tn3k3

∑nmax
2

n2=0 Tn2k2

∑nmax
1

n1=0 Tn1k1

v1(n3, n2, n1) ,

No hash tables, no trees ; we have an equation for
m(n1, n2, · · · ) ; for the potential we just use counters
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Points of possible interest to mathematicians

We use nested points, but abhor 2l+1 ; the difference between
the number of points in level l + 1 and level l is very small
(often one)

We use various point sets, but often choose points to optimize
the calculation of the (1-d) overlap (Gram) matrix
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Points of possible interest to mathematicians

Multidimensional collocation without a “mass matrix”, crucial
if iterative eigensolvers are necessary

Collocation with spectral Lagrange-type functions
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