
Parallel Computing 89 (2019) 102547 

Contents lists available at ScienceDirect 

Parallel Computing 

journal homepage: www.elsevier.com/locate/parco 

A dynamic, unified design for dedicated message matching engines for 

collective and point-to-point communications 

� 

S. Mahdieh Ghazimirsaeed 

a , ∗, Ryan E. Grant b , Ahmad Afsahi a 

a ECE Department, Queen’s University, Kingston, ON, Canada 
b Center for Computing Research, Sandia National Laboratories, Albuquerque, NM, USA 

a r t i c l e i n f o 

Article history: 

Received 11 December 2018 

Revised 6 August 2019 

Accepted 25 August 2019 

Available online 05 September 2019 

Keywords: 

MPI 

Message matching 

Message queue 

Collective communications 

Point-to-point communications 

a b s t r a c t 

The Message Passing Interface (MPI) libraries use message queues to guarantee correct message ordering 

between communicating processes. Message queues are in the critical path of MPI communications and 

thus, the performance of message queue operations can have significant impact on the performance of 

applications. Collective communications are widely used in MPI applications and they can have consider- 

able impact on generating long message queues. In this paper, we propose a unified message matching 

mechanism that improves the message queue search time by distinguishing messages coming from point- 

to-point and collective communications and using a distinct message queue data structure for them. For 

collective operations, it dynamically profiles the impact of each collective call on message queues during 

the application runtime and uses this information to adapt the message queue data structure for each 

collective dynamically. Moreover, we use a partner/non-partner message queue data structure for the 

messages coming from point-to-point communications. The proposed approach can successfully reduce 

the queue search time while maintaining scalable memory consumption. The evaluation results show 

that we can obtain up to 5.5x runtime speedup for applications with long list traversals. Moreover, we 

can gain up to 15% and 94% queue search time improvement for all elements in applications with short 

and medium list traversals, respectively. 

© 2019 Elsevier B.V. All rights reserved. 

1

 

f  

p  

c  

i  

i  

o

 

M  

t  

c  

t  

m  

b

s

t

t  

o  

b  

s  

fi  

c  

c  

g  

O  

d  

p  

t  

t  

m

h

0

. Introduction 

The Message Passing Interface (MPI) is the de facto standard

or communication in High Performance Computing (HPC). The

rocesses in MPI compute on their local data while extensively

ommunicating with each other. In this regard, one of the most

mportant challenges in MPI implementations is the efficiency of

nter-process communications that can have considerable impact

n the performance of parallel applications. 

There are different types of communication supported in the

PI standard such as point-to-point and collective communica-

ions. In the point-to-point communication, the sender and re-

eiver both take part in the communication explicitly. In the collec-

ive communication, which is extensively used by MPI applications,

essages are exchanged among a group of processes. In point-
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o-point operations and also collective operations that run on top

f point-to-point communications, the messages must be matched

etween the sender and receiver. Modern MPI implementations,

uch as MPICH [1] , MVAPICH [2] and Open MPI [3] separate traf-

c at coarse granularity, either not at all, on a per MPI communi-

ator level or by communicator and source rank. These solutions

an be improved by intelligently separating traffic into logical fine-

rained message streams dynamically during program execution.

n the other hand, collective operations are implemented using

ifferent algorithms. Each of these algorithms can have specific im-

act on the message queues. We take advantage of this feature

o propose a new unified message matching mechanism that, for

he first time, considers the type of communication to enhance the

essage matching performance. 

The contributions of the paper are as follows: 

• We propose a novel communication optimization that ac-

celerates MPI traffic by dynamically profiling the impact of

different types of communications on message matching per-

formance and using this information to allocate dedicated

message matching resources to collective communications. 

Our approach determines the number of dedicated queues

dynamically during the application runtime. 

https://doi.org/10.1016/j.parco.2019.102547
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2019.102547&domain=pdf
https://doi.org/10.13039/100000015
mailto:s.ghazimirsaeed@queensu.ca
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• We extend our message matching architecture by using the

partner/non-partner message queue design [4] for point-to-

point communications alongside the proposed collective engine

in a unified manner to enhance both collective and point-to-

point message matching performance. 
• We conduct several experiments to evaluate the impact of the

proposed approaches on performance gain of the collective

and point-to-point elements from different perspectives. We

evaluate the impact of collective message matching optimiza-

tion on both collective and point-to-point elements. Moreover,

we evaluate the impact of point-to-point message matching

optimization on both collective and point-to-point queue el-

ements. Finally, we show the impact of the unified collective

and point-to-point message matching design on queue search

time. We demonstrate that our unified approach accelerates

the collective and point-to-point queue search time by up to

80x and 71x, respectively, and that it achieves a 5.5x runtime

speedup for a full application over MVAPICH. 
• We also compare the proposed approach with Open MPI mes-

sage queue data structure in which allocates a queue for each

source process. The results show that we can gain scalable

memory consumption and at the same time gain up to 1.14x

speedup over Open MPI message queue design. 

The rest of the paper is organized as follows. Section 2 provides

some background information and discusses the motivation behind

the work. Section 3 discusses the related works. Section 4 presents

the proposed message matching approach. The experimental re-

sults are presented in Section 5 . Finally, Section 6 concludes the

paper and points to the future directions. 

2. Background and motivation 

In order to receive a message, a process must post a receive re-

quest with a communicator, rank and tag. A communicator is an

identifier of a logical grouping of MPI processes, ranks are process

addresses in a communicator and tags are special matching data

for each message. All processes in a communicator must partici-

pate in a collective operation. 

Well-known MPI implementations maintain a Posted Receive

Queue (PRQ) and Unexpected Message Queue (UMQ) at the re-

ceiver side to cope with the unavoidable out-of-sync communi-

cations. When a new message arrives, the PRQ is traversed to

locate the corresponding receive queue item. If no matching is

found, a queue element (QE) is enqueued in the UMQ. Similarly,

when a receive call is made, the UMQ is traversed to check if

the requested message has already (unexpectedly) arrived. If no

matching is found, a new QE is posted in the PRQ. As message

queues are in the critical path of communication, the overheads

of traversing them can become a bottleneck especially in applica-

tions that generate long queues. Therefore, designing an efficient

message matching mechanism is very important to obtain high-

performance communications. 

Modern MPI libraries use different queue data structures for

message matching. For example, MPICH and MVAPICH use the

linked list data structure that searches linearly for the key tuple

(communicator, rank, tag) in O(n q ) in which n q is the number of el-

ements in the queue. This traversal cost makes the linked list data

structure inefficient for long message queues. However, the advan-

tage of linked list data structure is that it has a minimal memory

consumption and excellent short list performance. 

The linear queue structure is improved in Open MPI [3] by con-

sidering the fact that the communicator restricts the rank space

and the rank restricts the tag space. Accordingly, in the Open MPI

data structure, there is an array of size n for each communicator

of size n . Each element of the array represents one rank and it has
 pointer to a linked list dedicated to messages corresponding to

hat rank. The advantage of this data structure is that it is consider-

bly faster than the linked list data structure for long list traversals.

his is because the queues can be reached in O(1) after finding the

ommunicator. However, the disadvantage of this data structure is

hat it maintains an array of size n for each communicator of size n

hich leads to high memory consumption [5] especially for multi-

hreaded MPI communications. Newer approaches such as CH4 in

PICH [6] use more than one list. Others [7,8] also propose us-

ng multiple linked list queues. However, the problem with these

pproaches is that they do not determine the number of queues

ynamically based on each process’ message queue behavior. Our

ork also differs from these approaches in that it distinguishes be-

ween collective and point-to-point queue elements to dynamically

llocate sufficient number of queues required for message match-

ng. For point-to-point elements, it uses the partner/non-partner

essage queue design [4] . For collective elements, it dynamically

rofiles the impact of each collective call on message queue and

ses this information to allocate sufficient number of queues for

ach collective. 

.1. Motivation 

Improving the message matching performance for collective

ommunication operations is only useful if they have considerable

ontribution in posting elements to the message queues. In order

o understand if improving message matching performance for col-

ective communications is useful, we profile several applications to

nderstand their matching characteristics. In this experiment, we

ount the number of elements that enter the queues from point-

o-point or any non-collective communication operation. We also

ount the number of elements that enter the queues from col-

ective communications. For this, we provide a hint from the MPI

ayer to the device layer to indicate whether the incoming message

s from a point-to-point or collective communication. 

Fig. 1 shows the application results for Radix [9] , Nbody [10,11] ,

iniAMR [12] and FDS [13] with 512 processes. The descriptions

f these applications are provided in Section 5.3 . As can be seen

n Fig. 1 (a), almost all the elements that enter the queues in

adix are from collective communications. Fig. 1 (b) shows that the

ajority of the elements that enter the queues in Nbody are from

oint-to-point communications but that it still has a significant

umber of elements from collective communications (around 11k

nd 25k for UMQ and PRQ, respectively). It is evident in Fig. 1 (c)

nd (d) that both point-to-point and collective communications

ave contributed to the message queues in MiniAMR and FDS.

owever, a larger fraction of queue elements are from collective

ommunications. In general, Fig. 1 shows that both collective and

oint-to-point communications can have considerable impact on

he number of elements posted to the message queues. On the

ther hand, the list searches of greater than 1 k have significant

mpact on message latency [14] . This shows the importance of

mproving the message matching performance for collective and

oint-to-point communications. 

MPI libraries use different algorithms to implement collective

perations where each of these algorithms can have a specific im-

act on the number of queue traversals. This motivates us to pro-

ose a message queue design that can dynamically profile the im-

act of the collective communications on the queues and uses that

nformation to adapt the message queue data structure for each

nd every collective communication. More specifically, the first

ime that a collective operation is called we profile its message

ueue behavior. This information is used to allocate some queues

or this collective on its subsequent calls. 

We enhance our design by using our previously proposed

artner/non-partner message queue data structure [4] for elements
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Fig. 1. Average number of elements in the queues from collective and point-to-point communications across all processes in different applications (512 processes). 
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oming from point-to-point communications alongside the pro-

osed collective message queue approach [15] in a unified design.

ote that the proposed collective message queue design cannot be

sed for point-to-point messages. The reason for this is that an

ndividual point-to-point communication does not provide enough

nformation for profiling the queues and adapting the queue data

tructure. We should iterate that the message queue mechanisms

hat are used in well-known MPI implementations, such as MPICH,

VAPICH and Open MPI, or are proposed in the literature [7,8,16–

8] do not consider the type of communication for message match-

ng, and therefore they keep the messages from all types of com-

unication in a single data structure. 

. Related work 

Several works have been proposed in literature to improve the

essage matching performance by reducing the number of queue

raversals [4,7,8,16,18] . Zoumevo and Afsahi [16] proposed a 4-

imensional data structure that decomposes ranks to multiple di-

ensions. This way, they could skip traversing a large portion of

he queue that the search is guaranteed to yield no result. This

ata structure has a small fixed overhead for searching any queue

tem which is only negligible for long list traversals. 

Flajslik, et al. [7] propose a message matching mechanism that

akes advantage of hash functions to group processes into mul-

iple bins (or queues). Increasing the number of bins speeds up

he search operation with the cost of more memory consumption.

he problem with the bin-based approach is that it imposes some

verhead for short list traversals. Moreover, it does not determine

he optimal number of bins. Bayatpour, et al. [8] propose a dy-

amic message queue mechanism to address the overhead issue

or short list traversals in the bin-based approach. In this work,

he application always starts with the default linked list message

ueue mechanism. If the number of traversals reaches a threshold,

t switches to the bin-based design. Unlike the bin-based approach

7] , this work benefits both short list and long list traversals. How-

ver, it still does not determine the optimal number of bins dy-

amically. Our work differs from these works in that it profiles the

essage queue behavior of collective operations to determine the

ptimal number of bins for collective elements dynamically during

he application runtime. Moreover, it uses the partner/non-partner

essage queue design [4] to dynamically determine the adequate

umber of queues for point-to-point communications. 

Ghazimirsaeed and Afsahi [18] propose a static message match-

ng mechanism based on K-means clustering algorithm. This work

roups the processes into some clusters based on their message

ueue behavior and allocates a dedicated queue for each group.

he problem with this design is that it is a static approach. More-

ver, it is not scalable in terms of memory consumption. 

Ghazimirsaeed, et al. [4] take advantage of sparse communica-

ion pattern in parallel applications to propose partner/non-partner

essage matching design that adapts based on the communication

requency between peer processes. Accordingly, they categorize

rocesses into a set of partners and non-partners . Partner processes
ave higher frequency of communication and a dedicated mes-

age queue is allocated to each of them. On the other hand, the

on-partner processes share a single queue. This way, they could

educe the queue search time for high communicating peers while

roviding scalable memory consumption. A hash table is used

o distinguish partner processes from non-partner processes at

earch time. The authors provide both static and dynamic versions

f their design. 

Many prior works explore hardware support for message

atching [6,17,19–22] . Klenk, et al. [17] use GPU features to

mprove the message matching performance. Underwood, et al.

19] , investigate hardware designs to efficiently perform MPI

essage matching. Rodrigues, et al. [20] explore mechanisms to

se PIM technology features to manage MPI message queues.

ew approaches such as CH4 in MPICH address the scalability

ssues in MPI and provide hardware supported message match-

ng [6] . Portals networking API [21] and Bull’s BXI interconnect

22] investigate hardware designs to perform efficient message

atching. The problem with hardware approaches is that they

equire special hardware that are not widely available. Moreover,

nly a certain number of messages can be handled in hardware,

ypically between 1K-5K elements for modern ternary content

ddressable memories. 

Other works examine the impact of the message queues on the

erformance of different MPI applications [23–26] or they evaluate

PI message matching performance [14,27,28] . For example, Bar-

et, et al. [14] evaluate MPI matching operations on hybrid-core

rocessors. 

Our approach differs from these works in that it considers

he type of communication to improve message matching per-

ormance. Moreover, unlike most of the message matching ap-

roaches it determines the number of queues dynamically during

he application runtime. To this aim, the first time that a collec-

ive operation (with specific message size and communicator size)

s called, we profile its message queue behavior. The profiling in-

ormation is used to allocate some queues for this collective in

ts subsequent calls. Moreover, in contrast to our previous work

15] that used a single linked list queue for point-to-point ele-

ents, this paper uses the partner/non-partner message queue de-

ign [4] in a unified manner with the collective message matching

esign to evaluate the impact of the point-to-point optimization

eside the collective optimization and also to further improve the

atching performance. 

. The proposed unified message queue design 

Fig. 2 shows the proposed unified message queue design.

henever a new queue element is to be added to the queue, we

heck if the element is coming from a point-to-point or a collec-

ive communication. If the element is coming from point-to-point

ommunication, we use the partner/non-partner message queue

ata structure [4] , which we call it the PNP approach. Otherwise,

f the element is coming from a collective operation, we use the

roposed message queue design for collective elements, which is
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Fig. 2. The proposed unified message matching mechanism. 
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referred to as the COL approach. We refer to the proposed unified

design as COL + PNP. We discuss the proposed COL message queue

design for collective elements in Section 4.1 . Then we briefly re-

view the PNP message queue design in Section 4.2 . Section 4.3 and

4.4 discuss the unified queue allocation and search mechanism in

more details, respectively. 

4.1. The COL message queue design for collective elements 

There are many different algorithms (such as ring, binomial

tree, fan-in/fan-out, etc.) proposed in literature or used in MPI li-

braries for collective operations. For each collective operation, the

choice of the algorithm depends on parameters such as message

size and communicator size. Each collective communication algo-

rithm has a specific impact on the behavior of message queues.

We take advantage of this feature to design a message matching

mechanism that adapts itself to the impact of collective commu-

nication algorithms on message queues. Fig. 3 shows the proposed

message queue mechanism for collective communications. We pro-

vide an overview of our design below. 

• A runtime profiling stage is used to determine the number of

queues for each collective communication operation with their

specific parameters (message size and communicator size). At

the profiling stage, all the collective operations share a single

profiling queue (pq) . 
• The profiling queue, pq, is only used for the first call of each

collective operation with their specific parameters. After that,

each collective operation generates its own set of queues. 
• The queues allocated to each collective operation could be de-

fined in multiple levels. At each level, a hashing approach based

on the number of queues is used for message matching. 
• A new level is used if two conditions are met: First, a simi-

lar collective operation is called but with new parameters. Sec-

ondly, the required number of queues for this collective is more

than the number of the queues that are already allocated for

such a collective operation. 

As can be seen in Fig. 3 , the profiling queue is used for the first

call of each collective operation with specific parameters. The in-

formation from the profiling queue is used to determine the num-

ber of queues that are deemed sufficient to have the minimum

queue search time for each collective operation. For example, in

Fig. 3 , q 1 number of queues are allocated for MPI_Allreduce in the

first level. 

If the same collective is called with different parameters, we

again profile its message queue behavior to calculate the required

number of queues ( q ). If q was larger than q , it means that
2 2 1 
he queues that are currently allocated in Level 1 are not suffi-

ient for the new collective operation. Therefore, we define a set

f q 2 queues in a new level. This procedure is continued as long as

he collective operation is used with the new parameters or until

e are limited by the memory consumption cap. The same proce-

ure is used for other collective operations including both blocking

nd non-blocking collectives such as MPI_Gather, MPI_Iallgather.

ote that each collective operation uses specific tags for message

atching. Therefore allocating dedicated queues for each collective

peration automatically creates dedicated channels for individual

ags. 

For each collective communication operation, we always insert

he new queue elements to the last level. For searching an element

hat is originated from collective communication, we always start

rom the profiling queue and then search the dedicated queues for

he collective operation from the first level to the last level in or-

er. This mechanism ensures that message matching ordering se-

antics are preserved. We explain the queue allocation and the

earch mechanism in more details in the following sections. 

.2. The PNP message queue design for point-to-point elements 

We use the partner/non-partner message queue design [4] for

he messages coming from point-to-point communications. The

ore idea of the design is to assign a dedicated queue for each

rocess that sends/posts a significant number of messages to

MQ/PRQ. These processes are called partners and they are ex-

racted dynamically at runtime. For extracting the partners, we

ount the number of point-to-point elements that each process

ends to the queue. Then, we calculate the average number of el-

ments that all processes send to the queue. Any process whose

umber of elements in the queue is more than the average is se-

ected as a partner. 

Fig. 4 shows the design of the partner/non-partner message

ueue data structure that has multiple levels. In the base level,

ll point-to-point elements share a single queue. When the length

f this queue reaches a threshold, θ , we extract some partners

nd allocate dedicated message queue to each of them. The non-

artner processes share a single non-partner queue. When the

ueue length of the non-partner queue reaches the threshold, θ ,

e extract some new partners in a new level. Therefore, each level

as a number of partner queues and a single non-partner queue. 

For searching the queues for non-partner processes, first we

earch the initial queue at the base level. Then, we search the non-

artner queues from level 0 to L − 1 in order. The green arrows in

ig. 4 show the order of searching the queues for a non-partner

rocess. For searching the queues for partners, we define the term

evel-of-partnership p . The level-of-partnership p shows the level in

hich process p becomes a partner. The order of searching the

ueues for partner process p is: 1) the initial queue, 2) the non-

artner queues from level 0 to level-of-partnership p , and 3) the

edicated queue for process p . The red arrow in Fig. 4 shows the

rder of searching queues for a process that becomes partner at

evel 0. 

We use a hash table to save the partner processes, and to dif-

erentiate them from non-partner processes at search time. The

ash tables maintain the dedicated queue number for partner pro-

esses and their level of partnership. As discussed earlier, to main-

ain memory scalability, we bound the total number of dedicated

ueues in both the COL and PNP approaches to k × √ 

n , where

 is an environment variable. Note that the number of allocated

ueues is the main memory overhead in both the COL and PNP

pproaches. 

For searching an element, first we lookup the hash table. If the

lement is not in the hash table, it means that the element is

oming from a non-partner process so we search the non-partner
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Fig. 3. The proposed message matching mechanism for collective elements. 

Fig. 4. Partner/non-partner message queue design for point-to-point queue elements. 
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Table 1 

List of parameters used for collective queue allocation and search 

mechanism. 

p Collective operation parameters (the type of collective 

operation, its message size and communicator size) 

pq The profiling queue for collective operations 

T The total number of dedicated queues 

l c The number of levels for collective operation c 

nq c Number of queues for collective c in the last level 

n Total number of processes 

k Memory consumption cap parameter 

q c The set of queues in the last level for collective c 

t The type of communication 

SE The searching element 

Q PNP The queue data structure for point-to-point elements 

nq cl The number of queues that are allocated for collective 

operation c at level l 

q cl The set of queues that are allocated for collective operation 

c at level l 

QE The matched element in the queue 
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queues in order. Otherwise, if the element is in the hash table,

it means that it is coming from a partner process, so we derive

its dedicated queue number and level of partnership and use this

information to search the queues accordingly. For a detailed de-

scription of the partner/non-partner design, we refer the interested

reader to our earlier work [4] . 

4.3. The unified queue allocation mechanism for collective and 

point-to-point elements 

Algorithm 1 shows the detailed description of the queue alloca-

tion mechanism in the proposed design. Table 1 lists the parame-

ters that are used as inputs and outputs of the algorithm and pro-

vides their definitions. 

Algorithm 1: The unified queue allocation mechanism for 

collective and point-to-point elements. 

Input : The communication type ( t), The collective operation 

parameters ( p), The queue for profiling collective 

communications ( pq ), Total number of the allocated 

queues ( T ), Number of levels for collective operation 

c ( l c ), The number of queues that are allocated for 

collective operation c in the last level ( nq c ), Total 

number of processes ( n ), The memory consumption 

cap parameter ( k ) 

Output : The set of queues generated in the last level of 

collective operation c ( q c ) 

1 if t==point-to-point then 

2 Add the element to Q PNP ; 

3 else 

4 if is_profiled(p)==0 then 

5 P p = profile( pq ); 

6 else 

7 if is_q_allocated(p)==0 then 

8 nq =calcul_num_queues( P p ); 

9 if nq + T < k × √ 

n then 

10 if nq > nq c then 

11 Generate queues q c [0 . . . nq − 1] ; 

12 T = T + nq ; 

13 l c + + ; 

14 nq c = nq ; 

15 end 

16 end 

17 end 

18 end 

19 end 

In the unified algorithm, we first check the type of communica-

tion. If it is a point-to-point communication, we add the element

to the partner/non-partner message queue data structure in Line 2.

Otherwise, when a collective communication is executed, we call

the function is_profiled(p) (Line 4). This function determines if the

collective operation with specific message size and communicator

size has already been profiled or not. If it has not been profiled, we

profile its message queue behavior and save the profiling informa-

tion in P p (Line 5). We use the average number of queue traversals

as the profiling information since it is the critical factor that deter-

mines the cost of message matching [8] . If the collective operation

has already been profiled, we call the function is_q_allocated(p) in

Line 7. This function determines if queues have already been allo-

cated for the collective operation with this specific message size

and communicator size range. If queue is not allocated, we call the

function calcul_num_queues (P p ) in Line 8. This function gets the
rofiling information gathered in the previous call of the collective

peration and returns the required number of queues ( nq ). 

In the best-case scenario, the average number of traversals to

nd an element is one. For this to happen, the number of queues

hould be equal to the average number of traversals. However, this

ay come at the expense of large memory allocation if the num-

er of traversals is significant. Therefore, we limit the total number

f queues allocated for all collective and point-to-point operations.

or choosing the cap for the number of queues, we considered the

emory consumption in MPICH and Open MPI. MPICH provides

calable memory consumption but it allocates only one queue for

essage matching, resulting in poor search performance for long

ist traversals. On the other hand, Open MPI is faster than MPICH

or long match lists but it has unscalable memory consumption as

t allocates n queues for each process. In our design, we take an in-

etween approach and bound the total number of queues that are

llocated in the COL and PNP approaches to k × √ 

n . k is an envi-

onment variable to evaluate the impact of increasing the memory

ap on message matching performance. 

If the number of queues, nq , plus the total number of queues, T ,

hat are already allocated, was less than k × √ 

n (Line 9), it means

hat we are still allowed to allocate the new queues, and so we

ill check the second condition in Line 10. 

The second condition compares nq with the number of queues

hat are currently allocated for collective operation c in the last

evel ( nq c ). If nq was less than nq c , there is no need to define a new

evel and allocate a new set of queues as nq c number of queues is

ufficient for this collective. However, if nq was greater than nq c ,

he new set of queues should be allocated in a new level (Line 11).

inally, we update T, l c and nq c in Line 12 to 14. 

.4. The unified search mechanism for collective and point-to-point 

lements 

Algorithm 2 shows the search mechanism in the proposed uni-

ed message queue design. A brief description of the inputs and

utputs of the algorithm is provided in Table 1 . The inputs of this

lgorithm are as follows: the type of communication ( t ), whether it

s point-to-point or collective. If the communication was collective,

he parameter c determines the type of collective operation. The

arameters ( c and t ) are ported from the MPI layer to the device

ayer. Other inputs of the algorithm are the searching element ( SE )

hich is the tuple rank, tag and communicator, the queue data

tructure for point-to-point elements ( Q PNP ), the profiling queue

or collective operations ( pq ), the number of levels for collective

peration c ( l c ), and the number of queues that are allocated for

ollective operation c at level l ( nq ). The output of the algorithm
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s the search result ( QE ). If the element is not found, QE will be

ull. 

Algorithm 2: The unified queue search mechanism for col- 

lective and point-to-point elements. 

Input : The communication type ( t), The collective operation 

( c), The searching element ( SE), The queue data 

structure for point-to-point elements ( Q PNP ), The 

queue for profiling collective communications ( pq ), 

The number of levels for collective operation c ( l c ), 

The number of queues that are allocated for 

collective operation c at level l ( nq cl ), the set of 

queues that are allocated for collective operation c at 

level l ( q cl ) 

Output : The result of the search ( QE) 

1 if t==point-to-point then 

2 QE=Search Q PNP for SE; 

3 Return QE; 

4 else 

5 Search pq ; 

6 for i = 1 to l c 
7 do 

8 q _ num = extract_queue_number( SE, nq ci ); 

9 QE=Search q ci [ q _ num ] for SE; 

10 end 

11 Return QE; 

12 end 

At the time of searching, we first check the type of the com-

unication in Line 1. If it is a point-to-point communication, the

artner/non-partner queue data structure for point-to-point ele-

ents ( Q PNP ) is searched (Line 2). If the message is originated from

 collective operation, we search the profiling queue pq since it

ight have some elements (Line 5). Then we search the queues

llocated for this collective operation from the first level to the

ast level in order (Lines 6 to 10). Each level consists of a specific

umber of queues ( nq ci ), and the queue elements are enqueued us-

ng a hashing approach. For searching each level, first we call the

unction extract_queue_ number (SE, nq ci ) which takes the search

lement and nq ci as input and returns the queue number for the

earch element. For this, it simply divides the rank number of

he searching element by the number of queues nq ci and returns

he remainder as the output. 

. Experimental results and analysis 

In this section, we first describe the experimental setup. We

hen evaluate the impact of the proposed COL + PNP approach on

he performance of some blocking and non-blocking collective op-

rations including MPI_ Gather, MPI _Allreduce and MPI_Iallgather

n Section 5.2 . In Section 5.3 , we present and analyze the queue

earch time speedup of the proposed COL + PNP message matching

pproach on four real applications and compare them against dif-

erent approaches described as below: 

COL + LL: In this approach, the COL approach is used for collec-

ive elements and a single linked list queue is used for point-to-

oint elements. 

LL + PNP: In this approach, a single linked list queue is used

or collective elements and the PNP approach is used for point-

o-point elements. 

OMPI: This refers to OpenMPI message queue data structure in

hich each rank has its own queue. 
The COL + LL and LL + PNP experiments provide us the oppor-

unity to discuss the effect of individual performance gain from

OL + LL and LL + PNP on general performance gained in COL + PNP. 

Section 5.4 presents the number of dedicated queues in collec-

ive, point-to-point and OMPI approaches. Finally, Section 5.5 and

.6 discuss the application runtime speedup and the overhead of

he proposed COL + PNP approach, respectively. 

.1. Experimental platform 

The evaluation was conducted on two clusters. The first clus-

er is the General Purpose Cluster (GPC) at the SciNet HPC Consor-

ium of Compute Canada. GPC consists of 3780 nodes, for a total of

0240 cores. Each node has two quad-core Intel Xeon E5540 op-

rating at 2.53 GHz, and a 16GB memory. We have used the QDR

nfiniBand network of the GPC cluster. We refer to this cluster as

luster A in this paper. The second cluster is Graham cluster from

ompute Canada. Graham has 924 nodes, each having 32 Intel E5-

683 V4 CPU cores, running at 2.1 GHz. We use 1G memory per

ore in our experiments. The network interconnect is EDR Infini-

and. We refer to Graham cluster as cluster B in the paper. The

PI implementation is MVAPICH2-2.2. While our design is imple-

ented in MVAPICH, it can be applied to other MPI implementa-

ions such as MPICH and Open MPI. 

The applications that we use for the experiments are Radix

9] , Nbody [10,11] , MiniAMR [12] and FDS [13] . The Radix appli-

ation is an efficient and practical algorithm for sorting numeri-

al keys which is used in different areas such as computer graph-

cs, database systems, and sparse matrix multiplication. Nbody is

 simulation of a dynamical system of particles, usually under the

nfluence of physical forces, such as gravity. MiniAMR is a 3D sten-

il calculation with adaptive mesh refinement. We use MiniAMR’s

efault mesh refinement options for the experiments. FDS or Fire

ynamic Simulator is a large-eddy simulation code for low-speed

ows, with an emphasis on smoke and heat transport from fires.

ll the application results are averaged across the entire applica-

ion runtime. Note that we have used these applications since they

ave different message queue behavior in terms of the number of

oint-to-point and collective elements in the queue. For example,

n Radix, almost all the elements in the queue are from collectives

 Fig. 1 (a)). In Nbody, most of the elements in the queue are from

oint-to-point communications ( Fig. 1 (b)). Moreover, these appli-

ations span short list traversals (Radix and MiniAMR) to long list

raversals (FDS). This provides us the opportunity to evaluate our

esign on applications with different message queue behavior. 

As discussed earlier, we bound the total memory overhead of

he COL + PNP approach to k × √ 

n . We define k = k C + k P , where k C 
epresents the number of allocated queues in the COL approach,

nd k P refers to the number of allocated queues in the PNP ap-

roach. This would allow us to evaluate the impact of memory

onsumption on the performance of both COL and PNP approaches,

ndividually. Note that in the COL + LL approach, there is no mem-

ry overhead for point-to-point queue elements and k = k C . More-

ver, in the LL + PNP approach, there is no memory overhead for

ollective queue elements and k = k P . 

.2. Microbenchmark results 

This section evaluates the impact of the proposed COL + PNP

pproach on the performance of some collective operations.

ig. 5 (a) shows that for MPI_Gather we can gain up to 1.5x, 2.4x

nd 5.4x latency reduction for 1024, 2048 and 4096 processes, re-

pectively. In this collective operation, process 0 gathers data from

ll the other processes which result in long message queues for

his process. Therefore, the proposed message matching mecha-

ism generates as many queues as it can to reduce the queue
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Fig. 5. Latency improvement in MPI_Gather, MPI_Allreduce and MPI_Iallgather, for k = 1 in Cluster A. 
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search time for process 0. For example, the number of PRQs that

are generated for 1024, 2048 and 4096 processes is 32 ( 
√ 

1 024 ),

45 ( 
√ 

2 048 ) and 64 ( 
√ 

4 096 ), respectively. In other words, pro-

cess 0 reaches the memory consumption cap for the number of

queues for these message sizes. Other processes generate only a

few queues (around 1 or 2) as their queue length is small. Fig. 5 (b)

and (c) show that we can gain up to 1.16 x and 1.26x latency reduc-

tion for MPI_Allreduce and MPI_Iallgather, respectively. The queues

in these collective operations are not as long as MPI_Gather. There-

fore, around 10 to 20 queues will be enough for them to gain this

speedup. 

One observation from Fig. 5 is that the performance improve-

ment decreases with increasing message size. The reason for this

is that as we increase the message size, the network’s data trans-

fer speed becomes the bottleneck rather than message matching

performance. 

5.3. Application queue search time 

In this section, first we discuss the queue search time perfor-

mance for collective elements in the COL + PNP approach with dif-

ferent memory consumption cap parameter k . This allows us to

evaluate the impact of different k values on the performance. Then,

we discuss the impact of four different approaches on the per-

formance of point-to-point elements, collective elements and all

the elements in the queue. These approaches include COL + PNP,

COL + LL, LL + PNP and OMPI. All the results are compared to the

linked list data structure for Radix, Nbody, MiniAMR and FDS. 

5.3.1. COL + PNP impact with different k on collective queue search 

time 

Fig. 6 presents the queue search time speedup of the COL + PNP

approach on the queue search time of the collective elements. It

also evaluates the impact of different memory cap parameter k C on

the queue search time speedup. The threshold for the partner/non-

partner design is θ = 100 since it provides the maximum per-

formance and scalable memory consumption as discussed in [4] .
oreover, we choose k P = 8 so as not to exceed k of 16 which

s the maximum memory cap for 512 processes. The results in

ig. 6 are conducted on Cluster B. 

Fig. 6 (a) and (b) show the average UMQ and PRQ search time

peedup across all processes for Radix, respectively. As can be seen

n these figures, increasing k C does not impact the queue search

ime significantly. That is because of the short list traversals of the

ueues (around 10 elements) for this application that make a small

ueue memory footprint sufficient to get a minor speedup. We ob-

erve almost the same behavior for Nbody in Fig. 6 (c) and (d). As

an be seen in these figures, we can gain up to 1.09x and 1.33x

peedup for UMQ and PRQ in Nbody, respectively. 

Fig. 6 (e) and (f) show the average queue search time speedup

or collective communications across all processes in MiniAMR. In

his application, we can gain up to 1.37x and 1.46x search time

peedup for UMQ and PRQ, respectively. As can be seen in this fig-

re, by increasing k C from 1 to 2 (or doubling the memory con-

umption), we can improve the queue search time speedup. How-

ver, increasing k C further does not have considerable impact on

ueue search time. For example, with 512 processes, increasing k C 
rom 1 to 2 improves the search time speedup around 22% for

MQ. However, increasing it further does not improve the search

ime speedup considerably. This shows that for 512 processes, less

han 44 (2 × √ 

512 ) queues is enough to gain the maximum search

ime speedup. We will discuss the number of generated queues for

ifferent number of processes in each application with more de-

ails in Section 5.4 . 

Fig. 6 (g) and (h) present the UMQ and PRQ search time speedup

or collective communications in FDS. For this application, we

how the search time speedup for process 0 since this process

as the majority of communications. As can be seen in the figures,

e can gain around 42x queue search time speedup for collective

ueue elements in this application. Note that in FDS, each process

ends a number of messages to process 0 through MPI_Gather(v).

his hotspot behavior places significant stress on the MPI matching

ngine. Therefore, FDS results show the potential maximum per-

ormance that can be gained by the proposed message matching
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Fig. 6. Average UMQ and PRQ search time speedup for collective elements with the COL + PNP approach and different k C values ( k P = 8 ) in Radix, Nbody, MiniAMR and FDS 

in Cluster B 
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echanism. Moreover, they provide the opportunity to indirectly

ompare the performance gain of our approach with other mes-

age matching proposals that use this application [4,7,18] . Finally,

hese results show that with an MPI implementation that support

ong message queue traversals, we can provide the opportunity to

he programmer to design less complicated code while maintain-

ng high performance. 

.3.2. COL + PNP, COL + LL, LL + PNP and OMPI impact on collective, 

oint-to-point and total queue search time 

Figs. 7 and 8 show the queue search time speedup of COL +
NP, COL + LL, LL + PNP and OMPI for Radix, Nbody, MiniAMR and

DS. We present the speedup for all the elements in the queue,

he point-to-point elements and also the collective elements. The

xperiment are conducted on Cluster B. 

This figure shows the speedup when k C = 8 . The reason we

hoose k C = 8 is that it provides a scalable memory consumption

nd at the same time it has the maximum performance gain in al-

ost all cases as shown in Fig. 6 . For the point-to-point elements,

e use the same θ and k P discussed in previous section. 

Fig. 7 (a) and (b) show the average UMQ and PRQ search time

peedup for Radix, respectively. As can be seen in these figures, in

ll approaches, the speedup for point-to-point elements is around

. The reason for this is that, in Radix, almost all the elements in

he queue are coming from collective communications and there

re a few point-to-point elements in the queue ( Fig. 1 (a)). These

gures also show that in total we can gain up to 1.15x and 1.14x

earch time speedup for all the elements in the queue in COL + PNP.

ne observation from Fig. 7 (a) and (b) is that the performance of

OL + LL and COL + PNP is almost similar. In other words, the use

f LL or PNP approaches for point-to-point elements does not af-

ect the performance since there are just a few, if any, point-to-

oint elements in the queue. Another observation from the fig-

re is that the total performance gained for all the elements in
OL + LL and COL + PNP is more that that of LL + PNP. This is again

ecause of a few number of point-to-point elements in this appli-

ation that present no room for search time optimization of these

lements. Comparing OMPI queue search time speedup with that

f COL + PNP, we can observe that the performance of COL + PNP is

lose to OMPI without its memory overheads. The memory over-

ead is discussed in detail in Section 5.4 . 

Fig. 7 (c) and (d) show the average UMQ and PRQ search time

peedup for Nbody. In this application, there are a significant num-

er of elements in the queue from point-to-point communication

 Fig. 1 (b)). When we separate the queue for collective elements

n the COL + LL approach, the queue length for point-to-point el-

ments is reduced and its queue search time improves by up to

.23x and 1.37x in UMQ and PRQ, respectively. The total search

ime speedup for all elements in UMQ and PRQ is 1.18x and 1.27x,

espectively. Using the partner/non-partner message queue design

or point-to-point communication in the LL + PNP approach im-

roves the performance of point-to-point elements by 2.26x and

.28x for UMQ and PRQ, respectively. Comparing COL + LL with

L + PNP, we can observe that LL + PNP provides more speedup for

ll the elements. The reason for this is that LL + PNP is improving

he queue search time of point-to-point elements which are sig-

ificant in Nbody compared to collective elements. In other words,

L + PNP has more opportunity to improve performance compared

o COL + LL. In the COL + PNP approach, we combine the two ap-

roaches and reach the speedup of 1.94x and 1.89x for all ele-

ents in UMQ and PRQ, respectively. As expected, this speedup

s greater that the speedup of individual COL + LL and LL + PNP ap-

roaches. Comparing point-to-point speedup in COL + PNP with

OL + LL and LL + PNP, we can observe that some part of the point-

o-point speedup is because of separating point-to-point elements

rom collective elements. However, the majority of performance

ain comes from the partner/non-partner message queue design.

ne interesting observation in Fig. 7 (c) and (d) is that the perfor-
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Fig. 7. Average UMQ and PRQ search time speedup for collective, point-to-point and total elements with COL + PNP and COL + LL approaches and k C = k P = 8 for Radix and 

Nbody in Cluster B. 
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mance of collective elements in OMPI is close to that of COL + PNP

(around 1.1x and 1.22x for UMQ and PRQ, respectively). This shows

that (k c = 8) × √ 

n queues is sufficient to gain maximum speedup

for collective elements in this application. This observation com-

plies with the results in Fig. 6 (b) and (c). For point-to-point ele-

ments, the speedup of OMPI is greater than COL + PNP. However,

this improvement comes with the expense of unscalable memory

consumption which is discussed in detail in the next section. 

Fig. 8 (a) and (b) show the queue search time speedup in Mini-

AMR. In this application, there are just a few number of point-to-

point elements in the queue ( Fig. 1 (c)). Therefore, the speedup for

point-to-point elements is around 1 in all cases. Consequently, the

speedup of the COL + LL approach and COL + PNP approach is al-

most the same for collective elements as well as all the elements.

Moreover, the speedup of all elements in LL + PNP is around 1 since

it uses a linked list queue for collective elements and there is

not much point-to-point elements to take advantage of the PNP

approach. Another observation from this figure is that the per-
ormance gain of COL + PNP is close to that of OMPI. This com-

lies with the results in Fig. 6 (g) and (h) that shows (k c = 8) × √ 

n

hould be enough to gain maximum queue search time speedup. 

Finally, the COL + PNP results in Fig. 8 (c) and (d) show that we

an gain up to 4.4x and 73x search time speedup for UMQ and

RQ point-to-point elements in FDS, respectively. Moreover, the

OL + LL results show that by taking out the collective elements

rom the queue in FDS, the search time of point-to-point elements

n UMQ and PRQ improves by up to 3.34x and 71x, respectively.

he total UMQ and PRQ search time speedup in the COL + LL ap-

roach is 27x and 52x, respectively. As discussed in Section 5.3.1 ,

his large performance gain is possible due to the long list traver-

als in this application. Comparing the COL + LL results with that of

L + PNP, we can observe that the total performance gained for all

lements in COL + LL in more than LL + PNP. This is because most

f the queue elements in FDS are coming from collective commu-

ication ( Fig. 1 (d)) which provides more opportunity for improve

erformance in COL + LL. One interesting observation in Fig. 8 (c)
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Fig. 8. Average UMQ and PRQ search time speedup for collective, point-to-point and total elements with COL + PNP and COL + LL approaches and k C = k P = 8 for MiniAMR 

and FDS in Cluster B 
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T  
nd (d) is that LL + PNP can improve the performance of collective

lements up to 17x and 2x for UMQ and PRQ by just separating

oint-to-point elements from collective elements. COL + LL further

mproves the performance of collective elements by using the COL

pproach for collectives. Comparing the performance of point-to-

oint elements in CPL + PNP with COL + LL and LL + PNP in Fig. 8 (c),

e can observe that around 3.2x of UMQ speedup is because of

eparating the point-to-point elements from collectives and the

est of the performance gain is coming from partner/non-partner

essage queue design. On the other hand, comparing COL + PNP

ith COL + LL and LL + PNP in Fig. 8 (d) shows that most of the per-

ormance gain for point-to-point PRQ messages is because of sep-

rating the collective and point-to-point elements. This shows that

n PRQ, a significant number of collective elements should be tra-

ersed to search for a point-to-point message. The last observa-

ion from Fig. 8 (c) and (d) is that OMPI provides better perfor-

ance compared to COL + PNP. This complies with the results in

ig. 6 (e) and (f). As can be seen in these figures, the queue search
ime speedup in FDS increases as we increase the number of al-

ocated queues ( k c ) as compared to other applications that k c = 2

r k c = 4 is sufficient for them to gain the maximum speedup.

n Section 5.4.3 , we will discuss that the OMPI performance gain

omes with the expanse of unscalable memory consumption while

OL + PNP keeps trade off between search time speedup and mem-

ry consumption. 

Note that the performance gain for all the elements in the

ueue has a direct relationship with the performance gain for

oint-to-point and collective elements. However, whether it is

ore due to point-to-point or collective performance depends on

he distribution of these elements in each application. In Radix, al-

ost all the elements in the queue are from collective communi-

ation ( Fig. 1 (a)). Therefore, the queue search time speedup for all

lements is roughly similar to the search time speedup for collec-

ive elements ( Fig. 7 (a) and (b)). On the other hand, in Nbody, the

umber of point-to-point elements in the queue is more ( Fig. 1 (b)).

herefore, the search time speedup for all elements is more
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Fig. 9. Number of dedicated UMQs and PRQs for collective and point-to-point operations with the COL + PNP approach and k = 16 in Radix, Nbody, MiniAMR and FDS in 

Cluster B. 
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dependent on search time speedup of point-to-point elements

( Fig. 7 (c) and (d)). In MiniAMR and FDS, both point-to-point and

collective elements contribute to the message queues. However,

the contribution of collective elements is more ( Fig. 1 (c) and (d)).

As a result, in these applications, the performance gain for all

elements is due to both point-to-point and collective message

matching improvement, but it is mainly because of the collective

speedup ( Fig. 8 (a)–(d)). 

5.4. Number of dedicated queues for the applications 

As discussed earlier, the memory consumption of each mes-

sage queue data structure is directly related to the number of

allocated queues in these data structures. Therefore, in this sec-

tion, we present the number of dedicated queues for the appli-

cations studied in this paper. The same parameters discussed in

Section 5.3.2 are used for the experiments. 

First, we discuss the number of dedicated queues for collective

and point-to-point communications in the COL + PNP approach in

Section 5.4.1 and 5.4.2 , respectively. Then, Section 5.4.3 compares

the number of allocated queues for all the elements in COL + PNP

with that of OMPI. 

5.4.1. Number of dedicated queues for collective communications 

Fig. 9 shows the number of allocated queues in Radix, Nbody,

MiniAMR and FDS for collective and point-to-point communica-

tions with the COL + PNP approach. 

Fig. 9 (a) shows the average number of queues across all pro-

cesses in the Radix application. This application uses the collective

operations MPI_Iallgather, MPI_ Allreduce, MPI_ Reduce and MPI_

Reduce_scatter. Among these collectives, MPI_ Iallgather has the

most contributions in generating long list traversals for this appli-

cation, and around 65% of the queues for collective elements in

Fig. 9 (a) are for this operation. 

Fig. 9 (b) presents the average number of dedicated queues

across all processes for Nbody. This application has the col-

lective operations MPI_Allgather, MPI_Allreduce, MPI_Bcast and

MPI_Reduce. Among these collectives, MPI_Allgather has the most

contribution in generating long list traversals and thus, most of the

dedicated queues for collective elements in Fig. 9 (b) belong to this
ollective. Other collectives either do not generate long message

ueues or they are called just a few times in the application. 

Fig. 9 (c) shows the average number of generated UMQs and

RQs across all processes for MiniAMR with different num-

er of processes. This application uses the collective operations

PI_Allreduce, MPI_Bcast, MPI_Allgather and MPI_Reduce. For this

pplication, MPI_Allreduce has the most contribution in generat-

ng long list traversals. Therefore, most of the dedicated collective

ueues in Fig. 9 (c) belong to this operation. 

In Fig. 9 (d), we present the number of UMQs and PRQs that

re generated in the FDS application. Here again, we show the re-

ults for rank 0 since this process has the majority of communica-

ions (as discussed in Section 5.3.1 ). This figure shows that process

 of FDS generates as many PRQs as it can for collective communi-

ations. For example, when the number of processes is 1024, 256

ollective queues are generated which is the memory cap for the

umber of queues ( 8 × √ 

1024 = 256 ). Note that FDS uses the col-

ective operations MPI_Gather, MPI_ Gatherv, MPI_Allgatherv, MPI_

llreduce and the majority of the queues that are generated for

rocess 0 belong to MPI_Gatherv. 

Comparing Fig. 9 with Fig. 1 shows that the number of allo-

ated queues for collective communications is in concert with the

umber of collective elements in the queues for each application.

or example, Nbody does not have significant number of collec-

ive elements in both UMQ and PRQ ( Fig. 1 (b)), so the number

f collective UMQ and PRQ allocated for this application is around

0 ( Fig. 9 (b)). On the other hand, there are significant number of

ollective elements in FDS ( Fig. 1 (d)) and the number of collec-

ive queues allocated for this application reaches 360 ( Fig. 9 (d)). In

eneral, Fig. 9 shows that the applications with longer collective

raversal such as MiniAMR and FDS have a larger number of col-

ective queues compared to Radix and Nbody with short collective

raversal. 

.4.2. Number of dedicated queues for point-to-point communications

Fig. 9 shows that the number of generated queues for point-to-

oint communications in the COL + PNP approach directly relates to

he number of point-to-point queue elements. For example, there

re a few number of point-to-point elements in Radix and Mini-

MR ( Fig. 1 ). Therefore, the queue length of the original linked list
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Fig. 10. Number of allocated UMQs and PRQs in the COL + PNP approach vs. OMPI for Radix, Nbody, MiniAMR and FDS on Cluster B. 
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Fig. 11. FDS runtime speedup over MVAPICH in Cluster B. 
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ueue does not reach the threshold, θ , and the number of gen-

rated queues is 0. On the other hand, the number of point-to-

oint elements in Nbody and FDS is more significant. This causes

he queue length to reach the threshold, θ , more frequently which

esults in more queues. 

Comparing Fig. 9 with Figs. 7 and 8 , we can observe that the

umber of the allocated queues in the proposed COL + PNP message

atching design is in concert with the queue search time speedup

or both collective and point-to-point communications. One obser-

ation from Fig. 9 is that in many cases, the number of allocated

ueues increases with increasing number of processes. However,

t never exceeds the memory consumption cap k × √ 

n . The num-

er of dedicated queues is limited to a few queues for applications

ith short list traversals, up to the max k × √ 

n for applications

ith long list traversals. This shows the scalability of the proposed

pproach in terms of memory consumption. 

.4.3. Total number of dedicated queues in COL + PNP vs. OMPI 

In this section, we compare the memory consumption of the

roposed COL + PNP approach with OMPI. Fig. 10 shows the aver-

ge number of allocated UMQs and PRQs across all processes for

adix, Nbody, MiniAMR, and FDS. As the figure shows, the num-

er of allocated queues in OMPI is by far more than the number

f queues in COL + PNP for all four applications. This shows the un-

calability of OMPI in terms of memory consumption. As discussed

arlier, in OMPI each source rank has its own queue so the number

f allocated queues is O ( n ) for n processes. 

As discussed in Section 5.4.2 and 5.4.1 , the COL + PNP approach

llocates k × √ 

n queues for rank 0 in FDS. For all the other pro-

esses, one linked list queue is sufficient as they do not receive

any messages. Fig. 10 (d) shows the average number of queues

cross all processes in FDS which is around one with COL + PNP. On

he other hand, OMPI allocates n queues for all the processes. We

hould note that Fig. 9 (d) shows the number of queues allocated
n COL + PNP for rank 0 while Fig. 10 (d) shows the average number

f queues across all processes. 

.5. Application execution time 

Fig. 11 shows the FDS runtime in the proposed COL + PNP ap-

roach and compares it against COL + LL, LL + PNP, and OMPI mes-

age queue designs. The results show that we can gain up to 5x

nd 2.3x runtime speedup with COL + LL and LL + PNP, respectively.

he reason COL + LL provides more speedup compared to LL + PNP is

hat the number of collective elements in FDS is more ( Fig. 1 (d)),

o COL + LL has more opportunity to improve queue search time as

iscussed in Section 5.3.2 ( Fig. 8 (c) and (d)). 

The improvement in COL + LL comes from two factors: 1) Mes-

age matching speedup for point-to-point elements since they

re separated from collective elements; and 2) message match-

ng speedup for collective elements. In Section 5.3 , we discussed

he impact of each of these factors on total search time improve-

ent. The gray bar shows that we can gain up to 5.5x runtime
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Table 2 

Overhead/search time ratio in COL + PNP. 

Applications Number of processes Overhead/search time ratio 

Radix 512 0.0359 

1024 0.03027 

2048 0.0175 

Nbody 256 0.1563 

512 0.0589 

1024 0.0343 

MiniAMR 512 0.0192 

1024 0.0366 

2048 0.0138 

FDS 512 0.0027 

1024 0.0021 

2048 0.0020 
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speedup by combining COL + LL with LL + PNP. This shows that us-

ing partner/non-partner message queue design for point-to-point

elements can further improve the performance gain from 5x in

COL + LL to 5.5x in COL + PNP. 

The results for COL + LL, LL + PNP, and COL + PNP in Fig. 11 follows

the results in Fig. 8 (c) and (d) and also Fig. 9 (d). As more queues

are generated ( Fig. 9 (d)), the UMQ and PRQ search time speedup

improves ( Fig. 8 (c) and (d)) and consequently, the FDS execution

time speedup increases ( Fig. 11 ). 

One observation from Fig. 11 is that the speedup of COL + PNP

(up to 5.5x) is more than that of OMPI (up to 4.8x). On the other

hand, as shown in Fig. 8 (c) and (d), OMPI provides more queue

search time improvement compared to COL + PNP. The reason OMPI

does not provide better execution time speedup than COL + PNP,

despite its great queue search time speedup, is that it allocates

memory for an array of size n , which is a time consuming oper-

ation and degrades total execution time performance. 

Note that we do not show the results for Radix, Nbody and

MiniAMR since their queue search time speedup does not translate

to considerable improvement in their application execution time

(their runtime speedup is around 1). 

5.6. Runtime overhead of the message queue design 

The COL approach imposes some runtime overhead for calcu-

lating the required number of queues for each collective and allo-

cating the queues. On the other hand, the PNP approach has some

overhead for extracting the partners. Table 2 presents the ratio of

the average runtime overhead of the COL + PNP approach across all

processes over the average queue search time across all processes

in Radix, Nbody, MiniAMR and FDS for different number of pro-

cesses. The results show that for all applications the overhead of

the proposed design is negligible compared to their queue search

time. 

6. Conclusion and future work 

In this paper, we propose a unified message matching mech-

anism that considers the type of communication to improve the

queue search time for collective and point-to-point elements. For

this, we separate the queue elements based on their type of com-

munication. For collective operations, we dynamically profile the

impact of each collective call on message queue traversals and use

this information to adapt the message queue data structure. For

the point-to-point queue elements, we use the partner/non-partner

message queue data structure [4] . The proposed unified approach

together can improve the message matching performance while

maintaining a scalable number of queues (memory consumption).

Our experimental evaluation shows that by allocating 194 queues

for point-to-point elements and 416 queues for collective elements,
e can gain 5.5x runtime speedup for 2048 processes in applica-

ions with long list traversals. For applications with medium list

raversals such as MiniAMR, it allocates the maximum of 74 queues

or 2048 processes to reduce the queue search time of collective

ommunications by 46%. 

We also compare our results with OpenMPI message queue data

tructure and show that we can gain up to 1.44x execution time

peedup over it while maintaining scalable memory consumption. 

Given the recent trends towards multi-threaded MPI communi-

ation [29] and matching challenges when using multiple threads

5] , we intend to extend this work to support multi-threaded com-

unications. Note that the collective approach is more targeted

or multiple threads as compared to rank-based message queue

esigns such as Open MPI queue data structure. That is because

he rank space memory requirements in these approaches become

ore of an issue with multi-threaded communications. 
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