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Abstract.

 

 Free-space optical interconnection is used to fashion a reconfigurable net-
work. Latency hiding techniques are used to enhance its performance. For this net-
work, we present and analyze broadcasting/multi-broadcasting algorithms that utilizes
latency hiding and reconfiguration. A combined total exchange algorithm has been
proposed based on a combination of the direct, and standard exchange algorithms.
Also, known algorithms for other collective communication primitives have been
adapted to our network.
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1. Introduction

 

Message-passing multicomputers are composed of a large number of processor/mem-
ory modules that communicate with each other by exchanging messages through
their point-to-point interconnection networks. As the communication overhead is one
of the most important factors affecting their performance, there has been a great deal
of interest in the design of the interconnection networks. In this respect, various types
of static interconnection networks, such as complete networks, hypercubes, meshes,
rings, and tori have been proposed and some of them have been implemented. 

We are interested in having a complete interconnection network, where any comput-
ing node can communicate with any other node directly. Complete interconnection
networks can be modeled by a complete graph 

 

K

 

N

 

, where all 

 

N

 

 vertices are linked
together and the diameter is one. Each vertex has degree 

 

N

 

 - 1 and the number of
edges is 

 

N

 

(

 

N

 

 -1)/2, far too high to be practical when 

 

N

 

 is large. These limitations pre-
vent implementing complete networks using metal-based interconnections.

Optics is ideally suited for implementing interconnection networks because of its
superior characteristics over electronics [18][9], such as higher interconnection den-
sity, higher bandwidth, suitability for reconfigurable interconnects, larger number of
fan-in and fan-out, lower error rate, freedom from planar constraints (light beams can
easily cross each other), immunity from electromagnetic field and ground loops,
lower signal crosstalk etc. It is foreseen that future massively parallel machines will
employ optical interconnections in an ever increasing manner. 
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Research is focusing in two major directions; the first implements point-to-point
interconnection networks [14] but utilizing the advantages of the new emerging opti-
cal technologies, while the second attempts to design new interconnection networks
[22][4] based on the constraints of optical devices, such as the optical passive star
coupler (OPS). These interconnection networks are modeled by hypergraphs.

Along the first direction, we introduce a complete network using a 

 

reconfigurable
free-space optical interconnect

 

. Free-space optical interconnects use free-space (vac-
uum, air or glass) for optical signal propagation and include two basic components:
one is the optoelectronic device for photon generation or modulation such as
VCSELs and SEEDs, while the other component is the optical beam router to redirect
or distribute optical beams. Optical beam routing in a free-space optical interconnec-
tion network often employs external optical elements such as holograms, mirrors,
prisms, lenses etc. 

The study of parallel algorithms have shown some generic communication primitives
that appear very often [13][7]. 

 

Collective communications

 

, are common basic pat-
terns of inter-processor communication that are frequently used as building blocks in
a variety of parallel algorithms. Proper implementation of these basic communication
operations on parallel architectures is the key to the efficient execution of the parallel
algorithms that use them. These collective communication problems include 

 

broad-
casting, multi-broadcasting, scattering, gathering, multinode broadcasting, 

 

and

 

 total
exchange. 

 

Excellent surveys on collective communication algorithms for different
networks can be found in [10][11][15]. 

In this work, we shall present efficient algorithms for some collective communication
problems for a reconfigurable optical interconnect. Special emphasis will be given to
latency hiding to overcome the impact of the reconfiguration costs. Thus, in section
two, we define a complete and reconfigurable optical interconnection network using
free-space beam routing (to be called 

 

OK

 

N

 

), and then discuss its communication
modeling. In section three, we present and analyze a broadcasting/multi-broadcasting
algorithm which utilizes the reconfiguration capabilities of this network. Later on in
sections four and five, algorithms for scattering and multinode broadcasting are
adapted to our network. Finally, a new algorithm for the total exchange operation, to
be called 

 

combined total exchange algorithm

 

, is proposed in section six.

 

2.  A reconfigurable optical interconnection network

 

In this section, we define an abstract model for our complete free-space optical inter-
connection network for massively parallel computers, and discuss its characteristics. 

 

Definition

 

    A reconfigurable optical network, 

 

OK

 

N

 

, consists of 

 

N 

 

computing nodes
with their own local memory. A node is capable of connecting directly to any other
node. These connections are established dynamically by reconfiguring the optical
interconnect. The links remain established until they are explicitly destroyed.

A simplified block diagram of the network is shown in Figure 1. Messages are sent
using circuit-switching. That is, a connection must be established between the source
and destination pair before the message is sent. Each node has the ability to simulta-
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neously send and receive 

 

k

 

 messages on its 

 

k

 

 links (the 

 

k-port 

 

model), or exactly one
message on one of its links (the 

 

single-port

 

 model). Full-duplex communication
where a node can send and receive messages at the same time is supported.

Various implementation technologies exist to embody the above abstract model. Such
technologies include computer generated holograms [23] and/or deformable mirrors
for switching [24], frequency hoping for coding, wavelength tuning for transceivers
[2], VCSELs [8] and/or SEEDs [12] for photon generation or modulation. In this
paper, we are particularly interested in the abstract model of our proposed network
and do not address these implementation issues. We shall assume that one or more of
the technologies outlined above will be used to implement the proposed interconnect.
Under such an implementation, the various overheads associated with the reconfigu-
ration of the network (such as tuning the receivers, reconfiguring the router, or send-
ing the frequency code in a frequency hoping implementation) are lumped together as
the (re)configuration delay 

 

d

 

.

An important concern is to model the communication time 

 

T

 

 required to send a mes-
sage from one node to another. In the linear model, the communication time depends,
among other things, on the length of the message, and it is formulated as 

where 

 

l

 

m

 

 is the length of the message,  is the per unit transmission time, and 

 

t

 

s

 

 is the
time required to prepare the message, such as adding a header, a trailer, etc.

For our case, we amend the linear model by explicitly including the reconfiguration
delay 

 

d

 

 (

 

d

 

 is an integer) that is necessary for a node to configure a link that would
connect directly to its target node. This configuration delay includes, for the case of
optical switching, such things as setting up the optical fabric (e.g. beam steering, set-
ting up a computer-generated hologram), the transmission code in the case of fre-
quency hoping etc. The transmission time then becomes . By

incorporating both 

 

t

 

s

 

 and  into a single message delay , the message

transmission time becomes  For the remaining of the discussion, and with-

out loss of generality, we assume that 

 

t

 

m

 

 = 1 for a message of unit length. We also
assume that 

 

T

 

 = 

 

d

 

 + 

 

M

 

 for a combined message size of 

 

M

 

 units length which is used
in scattering, multinode broadcasting, and total exchange operations.

We shall assume that a node sends a message to another node by first establishing a
link to the target (hence the configuration delay 

 

d

 

) and then sending the actual mes-

    
 . . .

. . . 

0                    1                     2                   N-1
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FIGURE 1.  OKN, a massively parallel computer interconnected by a complete free-
space optical interconnetion network
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sage over the established link. It is obvious that if the link is already in place, then the
configuration phase does not enter the picture with a commensurate savings in the
message transmission time. The main objective of this work is therefore to establish
efficient algorithms where the link establishment costs are minimized.

Our model differs from the 

 

postal model

 

 [1] in that we send the message after recon-
figuration, while in the postal model a message is sent immediately after the previous
one but it encounters a delay before it reaches its destination.

In this paper, we use the notations 

 

B

 

m

 

, MB

 

m

 

, S

 

m

 

, G

 

m

 

, TE

 

m

 

, to denote both the algo-
rithm and its time complexity for broadcasting, multi-broadcasting, scattering, multi-
node broadcasting (also called gossiping), and total exchange, respectively. We
derive the time complexities of collective communication algorithms in our network
under full duplex single-port (

 

m

 

 = 

 

F1

 

) or 

 

k-

 

port (

 

m

 

 = 

 

Fk

 

) models.

 

3. Broadcasting/Multi-broadcasting

 

Assuming that the (re)configuration delay 

 

d

 

 is the dominant factor contributing to the
message transmission time, we shall concentrate in techniques that could effectively
hide it. Such techniques allow a link that is to be used frequently to remain estab-
lished, or establishing the link prior to its use (under free space propagation, the acti-
vation of a link does not impede other ongoing communications). 

 

3.1  Broadcasting

 

k-port

 

:

 

 The easiest algorithm is to let the broadcasting node 

 

n

 

0

 

 inform 

 

k

 

 new nodes at

a step. Clearly, it takes  time units. In a more efficient algorithm,

 

B1

 

Fk

 

, node 

 

n

 

0

 

 sends the message to 

 

k

 

 other nodes and these 

 

k

 

 nodes, upon receiving
the message, send it to 

 

k

 

 other nodes each, which are distinct from the nodes that have
received the message thus far. Continuing this way, one will terminate the algorithm
after  time units. 

Another algorithm, 

 

B2

 

Fk

 

, allows the nodes that have already been informed, to re-
send the same message to a different group of nodes. Thus, starting with node 

 

n

 

0

 

, it
sends the message to 

 

k

 

 nodes. At the end of this step, 

 

k

 

 + 1 nodes possess the message
which they now send to 

 

k

 

 nodes each. The algorithm will terminate after
steps and will require  time units in total. 

The algorithms described above are logarithmic in time, but they suffer if one
assumes that the reconfiguration delay (

 

d

 

) is large compared to the message transmis-
sion delay (

 

t

 

m

 

). We are interested in devising algorithms that will overcome the exist-
ence of the large reconfiguration delay by essentially hiding it. Algorithm 

 

B1

 

Fk

 

 can be
improved if the configuration of all the links forming the tree proceed in parallel.
Hence, in this new algorithm, 

 

B3

 

Fk

 

, the broadcasting message would reach the leaves

of the tree in time . 

However, in a better algorithm 

 

B4

 

Fk

 

, a node that has sent the message to 

 

k

 

 other
nodes, reconfigures so that it can send the same message to another set of 

 

k

 

 nodes etc. 

d 1+( ) N 1–( ) k⁄

d 1+( ) N k 1–( ) 1+( )klog 1–( )

Nk 1+log d 1+( ) Nk 1+log

d N k 1–( ) 1+( )klog 1–+
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This process forms broadcast trees of varying depths. We also assume that the config-
uration of all the links in the various broadcast trees happen in parallel, as in B3Fk. It
is understood that while a node is reconfiguring, the message continues to propagate
over the previous broadcast tree. Figure 2 depicts the algorithm for a 2-port network
with 41 nodes and a reconfiguration delay of 1. As it can be seen, the broadcast tree
rooted on node 0 covers only 31 of the total 41 nodes. As soon as node 0 has sent its
message to nodes 1 and 2, it starts the reconfiguration process to reach nodes 15 and
16 (and the second broadcast tree) and this is delayed by the (re)configuration delay
d=2. While this reconfiguration proceeds, the message continues to propagate over
the original broadcast tree. Under these assumptions, a message leaving node nx will

reach  nodes while nx is reconfiguring.

A configuration phase caches the sets of nodes an arbitrary node needs to connects to.
During the configuration phase, the nodes are divided into two groups; the group that
has already received the message and the one that has not. A node from the first group
will select a set of k nodes from the second, connect to these, and send them the mes-
sage it already has. Nodes that receive the message are placed in the first group.
Every time a node selects a new set of k nodes, it caches the names of the nodes in the
previous set together with the iteration number and then it increments the iteration
number. The configuration phase terminates when all nodes have received the mes-
sage. At the end of the configuration phase, each node has cached the sets of nodes it
needs to connect to together with their associated iteration numbers. For broadcasting
therefore, each node connects to the set of nodes prescribed by the first iteration. As
soon as a message to be broadcast reaches a node, it sends it out to the nodes it is
already connected to, and then reconfigures to the set of nodes prescribed by the sec-
ond cached-set etc.

In the example presented in Figure 2, node 0 has cached two sets. The first set com-
prises nodes 1 and 2, while the second set nodes 15 and 16. Similarly nodes 1 and 2
have two sets cached, while all other nodes have only one set indicating that they
need not reconfigure. Thus node 0 will pre-establish the links to nodes 1 and 2 and
will wait until it needs to broadcast a message. As soon as a broadcast commences,
node 0 will forward the message to nodes 1 and 2, reconfigure to link to nodes 15 and
16, send the same message to these two nodes, and finally reconnect to nodes 1 and 2

1 k k2 … k
d tm⁄

+ + + + k
d tm⁄ 1+

k 1–
-------------------=

0

1

3

0

1

2

3

4

FIGURE 2. Latency hiding broadcasting algorithm for OKN with 41 nodes, k = 2, d = 1
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waiting for the next broadcast message.

3.1.1  Analysis of the broadcast algorithm
Before presenting the analysis of our broadcast algorithm, we note that the total num-
ber of nodes, N(S), informed up to step S follows the recurrence:

      for : ,

      for : , and

      .

However, this recurrence cannot be solved for a general d. Therefore, in order to find
the time required for the broadcast algorithm to complete, we shall find the number of
nodes that will be informed as time progresses, and we shall stop when all nodes N
have been informed.

Denote by S the termination time (in units of tm). Then starting from an arbitrary node
n0, the nodes that will be informed, assuming no reconfiguration, belong to a k-ary

tree of depth S rooted at node n0. There are  nodes in this tree, and we

shall reference them as belonging to the first generation. Each of the nodes in this
tree, once it has broadcast the message to its own children, will reconfigure and will
become the root of a new tree over which a new wave of broadcasting will commence
and proceed concurrently with the broadcasting in the first generation tree. This can
only happen if  ensuring that the first node to be reconfigured (node n0) will
have enough time to reconfigure and broadcast to its k children. 

We shall refer to the nodes belonging to the trees rooted at nodes which were
included in a generation i tree and reconfigured, as the generation (i+1) nodes. Thus,
node n0 can send its message again at time d + 1 after its router has been reconfigured
to connect to a set of k new nodes. By sending this new message, n0 actually embeds
a new k-ary tree at depth d + 1. The next k nodes at depth 1 of the first generation of

trees embed k different k-ary trees at depth d + 2. Using this concept, the kS -d-2 nodes

at depth S-d-2 of the first generation embed the last kS-d -2 different trees at depth S - 1
in the second generation. Figure 3 depicts the embedding of the first two generations. 

Denote by N2 the total number of new nodes in the second generation, and by Mi the

S d 1+≤ N S( ) kN S 1–( ) 1+=

S d 1+> N S( ) kN S 1–( ) N S d– 1–( )+=

N 0( ) 1=

N1
kS 1+ 1–

k 1–
------------------=

S d 2+≥

0
1

d+1
d+2
d+3

S-1
S

n0

n0

1 1 k k2 kS-d-2

FIGURE 3.  First and second generation trees. The numbers underneath each tree denote the 
number of trees having the same height. These trees are rooted at nodes that were at the same 
level in the first generation tree.
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total number of new nodes in the trees of the second generation rooted at depth i.

Therefore, 

. 

This continues until depth S-1 where we have .

Therefore, the total number of new nodes in the second generation, N2, will be:

. 

The process of reconfiguring the optical interconnects continues by the nodes as soon
as they have broadcast the message to their children. Each generation of trees embeds
a new generation that commences at depth d + 1 from its parent generation. It is clear
that the total number of generations is .

Let us now count the total number of nodes N3 in the third generation. The first tree of
the third generation is embedded at depth 2(d +1) by n0. We begin with those trees of
this generation which are embedded by the nodes of the first tree in the second gener-

ation. Let  denote the total number of nodes in these trees rooted at depth i.  

,

, 

and this continues until depth S -1 where .

Now, consider trees embedded in the third generation by the nodes of the next k trees

at depth S - d - 2 in the second generation, and let  denote the total number of

nodes in these trees rooted at depth i. Therefore,

,

. 

This continues until depth S - 1 where .

We continue with the trees embedded in the third generation by the nodes of the next

k2 trees of depth S-d-3 in the second generation, and let  denotes the total number

of nodes in these trees rooted at depth i. Therefore,

Md 1+ k k2 … kS d 1+( )–+ + + kS d– k–
k 1–

-----------------= =

Md 2+ k k k2 … kS d 2+( )–+ + +( ) kS d– k2–
k 1–

-------------------= =

MS 1– kS d– 2– k( ) kS d– kS d– 1––
k 1–

------------------------------= =

N2 Mi
i d 1+=

S 1–

∑ kS d– kj–
k 1–

-------------------
j 1=

S d– 1–

∑= =

S d 1+( )⁄

Qi
1

Q2 d 1+( )
1 k k2 … kS 2 d 1+( )–+ + + kS 2d– 1– k–

k 1–
-------------------------= =

Q2 d 1+( ) 1+
1 k k k2 … kS 2 d 1+( )– 1–+ + +( ) kS 2d– 1– k2–

k 1–
---------------------------= =

QS 1–
1 kS 2d– 3– k( ) kS 2d– 1– kS 2d– 2––

k 1–
----------------------------------------= =

Qi
2

Q2 d 1+( ) 1+
2 k k k2 … kS 2 d 1+( )– 1–+ + +( ) kS 2d– 1– k2–

k 1–
---------------------------= =

Q2 d 1+( ) 2+
2 k k k k2 … kS 2 d 1+( )– 2–+ + +( )( ) kS 2d– 1– k3–

k 1–
---------------------------= =

QS 1–
2 k kS 2d– 4– k( )( ) kS 2d– 1– kS 2d– 2––

k 1–
----------------------------------------= =

Qi
3
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 , 

and this continues until depth S - 1 where .

The process of generating trees in the third generation continues up to the trees
embedded at depth S - 1, by the nodes of the trees in the second generation, rooted at

depth S- d- 2. Let  denotes the total number of nodes in these trees. There-

fore, .

Now, we are at the stage to sum the number of nodes at each depth in the third gener-
ation. Let  denote the total number of nodes of the trees in the third generation

rooted at depth i. Therefore, 

, , 

, ..., . 

Hence, the total number of the new nodes in the third generation, N3, will be:

.

In a similar manner, we can compute the number of nodes for the subsequent genera-

tions (e.g. ). This process implies lemma 1.

Lemma 1  The number of new nodes in generation i + 1,  can be found as:

Proof.  We give a combinatorial argument for its validity. Assume a tree belonging to
generation i -1 and rooted at depth (i -1)(d + 1). This tree will produce a number of

trees belonging to generation i and rooted at depth i(d + 1). The term 

represents the number of new nodes in the first tree of generation i rooted at depth i(d
+ 1). Subsequent trees in this generation, have a decreasing (by one) number of lev-
els, but since they were produced by nodes that are at lower levels in the parent gen-
eration, their numbers grow with the power of k. Therefore, the number of nodes

within all the trees at each level, remains the same and equal to . 

We have just accounted for the number of trees produced by a single tree in a par-

Q2 d 1+( ) 2+
3 k2 k k2 … kS 2 d 1+( )– 2–+ + +( ) kS 2d– 1– k3–

k 1–
---------------------------= =

QS 1–
3 k2 kS 2d– 5– k( )( ) kS 2d– 1– kS 2d– 2––

k 1–
----------------------------------------= =

QS 1–
S 2d– 2–

QS 1–
S 2d– 2– kS 2d– 3– k( ) kS 2d– 1– kS 2d– 2––

k 1–
----------------------------------------= =

Qi

Q2 d 1+( )
kS 2d– 1– k–

k 1–
-------------------------= Q2 d 1+( ) 1+ 2kS 2d– 1– k2–

k 1–
---------------------------=

Q2 d 1+( ) 2+ 3kS 2d– 1– k3–
k 1–

---------------------------= QS 1– S 2d– 2–( )k
S 2d– 1– kS 2d– 2––

k 1–
----------------------------------------=

N3 Qi
i 2 d 1+( )=

S 1–

∑ j kS 2d– 1– kj–
k 1–

-------------------------- 
 

j 1=

S 2d– 2–

∑= =

N4
j j 1+( )

2!
----------------- kS 3d– 2– kj–

k 1–
-------------------------- 

 
j 1=

S 3d– 3–

∑=

i 1≥

Ni 1+
j i 2–+
i 1– 

  kS i d 1+( )– 1+ kj–
k 1–

---------------------------------- 
 

j 1=

S i d 1+( )–

∑=

kS i d 1+( )– 1+ kj–
k 1–

----------------------------------

kS i d 1+( )– 1+ kj–
k 1–

----------------------------------
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ent generation. There are though more than one trees of identical depth in the parent

generation, and the multiplicative term  accounts of this number based on

the pascal’s triangles [5]. 

The total number of nodes in all generations is equal to , 

or  . (EQ 1)

To determine the termination time S one has to solve equation 1 for S. Unfortunately,
no analytical solution has been found. However, this equation can be solved numeri-
cally. The subsequent tables provide some numerical examples for the broadcasting
time, B4Fk, of our latency hiding algorithm, for already known algorithms, B1Fk and

B2Fk, on our network, and the lower bound , obtained from B2Fk when d = 0,

for a particular number of nodes, N, reconfiguration delay, d, and port modeling, k. It
is quite clear that the broadcasting time of our algorithm is much less than the known
algorithms.

   Single-port: In this case, a node can only use one of its links. Therefore, instead of
k-ary trees, linear arrays are embedded. Hence, using the same concept as in the k-
port modeling, the total number of nodes for generations 1, 2, 3 are: N1 = S + 1,

, . 

If we continue in a similar manner to the k-port modeling, then the total number
of nodes in all generations, N, would be: 

.       (EQ 2)

The subsequent table provides some numerical examples for the broadcasting time,
B4F1, (in terms of tm) of our latency hiding algorithm, of the spanning binomial algo-

rithm [21], and for the best case  when d = 0, for a particular number of nodes,

N, and reconfiguration delay, d. It is clear that the broadcasting time of our algorithm

j i 2–+
i 1– 

 

N N1 N2 … N S
d 1+
----------- 1–

+ + +=

N kS 1+ 1–
k 1–

------------------     j i 2–+
i 1– 

  kS i d 1+( )– 1+ kj–
k 1–

----------------------------------
j 1=

S i d 1+( )–

∑
i 1=

S d 1+( )⁄ 1–

∑+=

Nk 1+log

Table I: Broadcasting time, k = 2, d = 1

      N B2Fk B3Fk  B4Fk

99 10 7 5 5
1393 14 11 8 7

114243 22 17 13 11
1607520 28 21 16 14

Nk 1+log

Table II: Broadcasting time, k = 4, d = 3

      N B2Fk B3Fk  B4Fk

85 12 6 3 3
1369 20 9 5 5
88633 32 12 8 8

1429100 36 14 10 9

Nk 1+log

N2 S d– j–
j 1=

S d– 1–

∑= N3 j S 2d– 1– j–( )
j 1=

S 2 d 1+( )–

∑=

N S 1     j i 2–+
i 1– 

  S i d 1+( )– 1 j–+( )
j 1=

S i d 1+( )–

∑
i 1=

S d 1+( )⁄ 1–

∑+ +=

N2log
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is much less than the known algorithm. Also, the same grouping schema as in k-port
modeling can be used.    

4. Scattering
The scattering operation, is used to distribute data to the processors of a parallel com-
puter. The easiest algorithm fimplementing scattering, under single-port modeling, is
based on the sequential tree [19]. In this case, the source node sends its different mes-
sage to each of the other nodes sequentially. As the source of communication is the
same for the whole scattering operation, this node should reconfigure its optical inter-
connect after each step. Therefore, the scattering time, S1F1, is (N-1)(d+1) time units. 

The spanning binomial tree algorithm [16] used for broadcasting/multicasting opera-
tions can also be used for scattering operation. In this algorithm, the number of
informed nodes doubles at each step, and each node stores its own message and for-
wards the rest of the messages it received, if necessary, to its children. This algorithm
has a scattering time, S2F1, of  (note that we have neglected the data

permutation time at each node). It is easy to see that latency hiding technique does
not improve this timing cost in our network.
k-port: The sequential tree algorithm can be extended for k-port modeling. That is, at
each step the source node sends its k different messages to k other different nodes.
Therefore, . Another algorithm is proposed by F. Desprez et

al [6] for scattering operation. In this algorithm, the scattering node n0, sends k mes-

sages of length  each, to its k children. Therefore, there are (k + 1) nodes

having  different messages. These nodes, at step 2, communicate each with
their k children and send one (k + 1)-th of their initial message to each one. This pro-
cess continues and all nodes are informed after  communication steps. Thus

the scattering time, S2Fk, takes

S2Fk =  time units. 

5. Multinode broadcasting
In multinode broadcasting, also called gossiping [10], all nodes send their unique
messages to all other nodes. 

k-port: A lower bound for the multinode broadcasting time is  since each

node must receive  different messages and it can only receive at most k mes-
sages at a time. A simple algorithm is based on the extension of the direct algorithm

Table III: Broadcasting time, d = 3

      N  B4F1

69 28 12 7
1252 44 21 11
82629 68 34 17

d 1+( ) log2N N2log

N 1–( ) d N2log+

S1Fk d 1+( ) N 1–( ) k⁄( )=

N k 1+( )⁄
N k 1+( )⁄

Nk 1+log

d N

k 1+( )i
----------------+ 

 
i 1=

Nk 1+log

∑ N 1–
k

----------- d Nk 1+log+=

N 1–( ) k⁄
N 1–
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for k-port modeling. That is, at step i, node p sends its message to nodes 
(p + (i - 1)k + 1) mod N, (p + (i - 1)k + 2) mod N, ..., (p + ik) mod N.  

This algorithm has a cost of: .

A better algorithm is to let the nodes combine the messages to reduce the effect of
reconfiguration delay. We divide the nodes into  groups of (k + 1) nodes
each. Nodes are grouped as (0, 1, ..., k), (k + 1, k + 2, ..., 2(k +1) - 1), ..., (N - (k + 1),
N - (k + 1) + 1, ..., N - 1). At step 1, all nodes within a group exchange their messages.
At the end of this step, each node has (k + 1) messages. At step 2, node p exchanges
all its messages with nodes (p + (k + 1)) mod N, (p + 2(k +1)) mod N, ..., (p + k(k + 1))

mod N. At the end of this step, each node has  messages. Let s = .

This process continues to the step s, where node p exchanges its messages with the

nodes   (p + ) mod N, (p + 2 ) mod N, ..., (p + k ) mod N.

It is clear that at each step i of this algorithm, each node sends  messages to
k other nodes. Hence, this algorithm has a multinode broadcasting time of 

G2Fk = . 

Single-port: This is derived from the k-port model for k=1 with a lower bound of the
broadcasting time being  while G2Fk=

6. Total exchange
In total exchange, all nodes send their different messages to all other nodes. A naive
algorithm for total exchange is to perform a scattering operation N times in sequence.
However, better algorithms exist.

Single-port: In a direct algorithm [20], at step i, node p sends the message destined
for node (p + i) mod N. The cost of this algorithm, TE1F1, is (N - 1)(d + 1).

One may also use a standard exchange algorithm for total exchange similar to the
ones used in hypercubes, and meshes [3], where during each step, the complete net-
work is recursively divided into halves, and messages are exchanged across new divi-
sions at each step. Nodes combine messages into larger messages to be transmitted as
a single unit. Consider this algorithm for an 8-node multicomputer, as shown in Fig-
ure 4. There are  messages to be sent by each node at any step in this algorithm.
We only describe this for node 0. Node 0 sends all its messages for the nodes at the
upper half (that is, nodes 4, 5, 6, and 7) to node 4 at step 1. At the same time, it
receives the messages for its half from node 4. At the second step, node 0 sends its
messages, along with the messages from node 4, destined to nodes 2 and 3, to node 2.
At the same time, it receives the messages from nodes 2, and 6 for itself and node 1.
At the third step, node 0 sends its message along with the messages from nodes 2, 4,
and 6 to node 1. It is clear that at the end of this step all nodes have exchanged all

G1Fk d 1+( ) N 1–
k
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their messages. Thus, this algorithm, TE2F1, has a cost of .

  

Which algorithm, TE1F1 or TE2F1, is faster depends on the number of nodes N, and
the reconfiguration delay, d. We propose another algorithm, called combined total
exchange algorithm, TE3F1, which is a combination of these two algorithms. 

We begin this algorithm by doing some of (or even none of) the steps involved in the
standard total exchange algorithm, and then continue with the direct algorithm.

Assuming that we proceed for i steps with the standard total exchange algorithm.

After these i steps, there will be  groups of  nodes each. Each node now will
hold messages destined for nodes belonging to the same group which it must
exchange using the direct algorithm. Observe that because the preceding standard

algorithm, each node has a total  messages of which  are destined to the

node itself. Thus, each node must send a total of  messages to

the other  nodes in its group, or equivalently  messages to each

of the nodes. Thus, we can use the direct algorithm in each of the groups but with

larger messages, messages of size . Therefore, the total time for the combined total
exchange algorithms is computed as the time for the standard exchange part lasting

for i steps yielding  plus the time for the direct algorithm with messages of

size  on groups of  nodes yielding  for a total time 

TE3F1 = .

Let us explain this algorithm with i = 1 (number of steps doing the standard exchange
algorithm) for the example shown in Figure 4. At step 1, the nodes in our complete
network are divided in two groups. Each node exchanges 4 messages with its corre-
sponding node at the other half. This takes d + 4, and at this point, each of the net-
work halves contain messages destined to the half itself. As a matter of fact, each
node now has two messages for each of the nodes in its half. These messages can be

d N
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distributed to their destinations by using a direct algorithm. There are 4 nodes in each
half and 2 messages to be exchanged at a time for a cost of (4 - 1)(d + 2) = 3d + 6.
Hence, this algorithm has a total cost of 4d + 10. 

It is clear that this algorithm is exactly the same as the direct algorithm when i = 0,
and the standard exchange algorithm when . 

k-port: The direct algorithm for the k-port modeling requires node p at step i to send
its message to nodes (p + (i -1)k +1) mod N, (p + (i -1)k +2) mod N, ..., (p +ik) mod N.

This algorithm has a cost of, .

The same grouping and algorithm as G2Fk can be used for total exchange with the

exception that this time each node sends  messages at a time. Therefore, the

cost of this algorithm, TE2Fk = . Figure 5 illus-

trates the above algorithm when N =9 and k = 2. 

Which algorithm, TE1Fk or TE2Fk, is faster depends on the number of nodes N, num-
ber of input/output channels, k, and the reconfiguration delay, d. Just like the single-
port modeling, a combined total exchange algorithm, TE3Fk, is proposed which is a
combination of the above two algorithms with a total exchange time of

 and i being the number of steps doing

the standard exchange algorithm TE2Fk before switching to the direct algorithm
TE1Fk.

It is clear that this algorithm is exactly the same as the direct algorithm when i = 0,
and the standard exchange algorithm when . We haven’t found any math-

ematical proof that our algorithm is better than the known algorithms. However, in all
the numerical examples (more than 150,000) that we have performed for the compar-
ison of these algorithms, we have always found a step, i, for which, our combined
total exchange algorithm had a shorter or equal exchange time than both the direct,

, and the standard, , exchange algorithms. The
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above statement is also true for the single-port modeling. 

It is a conjecture that the combined total exchange algorithm has a termination time
that is earlier than (or at most equal) to either the direct or the standard total exchange
algorithms. 

Tables 5 and 6 below present some typical examples

 

7. Conclusion
Free-space optical interconnects provide attractive alternative ways to achieve high
speed communications in a massively parallel computer system. In this paper, we
proposed a reconfigurable, complete, free-space optical interconnection network,
where we showed how broadcasting can be done in an efficient way using a latency
hiding technique. Our algorithms are much faster the known algorithms. 

We also presented a new total exchange algorithm which is a combination of the
direct, and standard exchange algorithms. We conjecture that this algorithm has a
faster time (or at least equal to) than known algorithms in our network. We also
adapted known algorithms for scattering and multinode broadcasting to our network. 

We should mention that some of the algorithms in this paper are applicable to mas-
sively parallel computers where the number of nodes are a power of 2 or a power of
(k + 1) for single-port, and k-port modeling, respectively. Finding optimal algorithms
for networks having an arbitrary number of nodes is certainly chalenging and it is left
for future work. However, if the number of nodes is not a power of 2 or (k +1),
dummy nodes can be assumed to exist until the next power of 2 or (k +1), respec-
tively, and the algorithms presented in this work apply with little performance loss. 

In addition to our latency hiding techniques, other techniques such aspreconnect
(akin to prefetching [17]) can also be used to establish a communication link before it
is actually required. Cacheing link information dynamically can also hide the over-
head included in link establishment and message start-up. 
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