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Abstract Power consumption has become an increasingly
important constraint in high-performance computing sys-
tems, shifting the focus from peak performance towards im-
proving power efficiency. This has resulted in significant re-
search on reducing and managing power consumption. To
have an effective power management system in place, it is
essential to model and estimate the runtime power of a com-
puting system. Performance monitoring counters (PMCs)
along with regression methods are commonly used in this
regard to model and estimate the runtime power. However,
architectural intuitions remain fundamental with regards to
the current models that relate a computing system’s power
to its PMCs.

By employing an orthogonal approach, we examine the
relationship between power and PMCs from a stochas-
tic perspective. In this paper, we argue that autoregres-
sive moving average (ARMA) models are excellent candi-
dates for modeling various trends in performance and power.
ARMA models focus on a time series perspective of events,
and we adaptively update them through algorithms such as
recursive-least-squares (RLS) filter, Kalman filter (KF), or
multivariate normal regression (MVNR). We extend the no-
tion of our model to predict near future power and PMC
values. Our empirical results show that the system-level dy-
namic power is estimated with an average error of 8%, and
dynamic runtime power and instructions per cycle can be
predicted (65 time steps ahead) with an average error of less
than 11.1% and 7%, respectively.
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1 Introduction

High-performance computing (HPC) is the cornerstone of
the scientific community in tackling challenging problems in
diverse fields such as energy, medicine, weather and climate,
finance, defense, and data mining, to name a few. Tradition-
ally, the performance of HPC systems has been the main fo-
cus. However, power consumption and cooling issues have
become an increasingly important design constraints, result-
ing in high operational and maintenance costs. Modern HPC
systems incur a substantial cost in their total cost of owner-
ship due to the use of a very large number of power hungry
cores. For instance, Jaguar, the current leading system on the
Top500 list [5], recording a performance of 1.75 petaflops/s,
has 224162 cores, requiring a 6.9 megawatts of power. As-
suming a nominal cost of $0.10/kWh, this translates into
an average annual cost of $6.9M, just for electricity bill,
let alone the costs associated with the cooling systems and
backup power generations. Such concerns gave rise to the
Green500 list [1], effectively shifting the focus from peak
performance to power efficiency. For example, the current
leading system on the Green500 list (722 MFlops/Watt) is
approximately three times more power efficient than Jaguar,
ranking 44th on the list.

Substantial research has been done at different levels
of abstraction to manage the power consumption of mod-
ern computing systems. Power management (PM) can tar-
get different objectives: keeping the instantaneous power
consumption within acceptable thresholds, reducing the to-
tal energy consumption, keeping temperature metrics within
acceptable thresholds, etc. Estimation and prediction of
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power consumption and performance of a system is ben-
eficial for many PM programs to address their objectives.
Estimation of power is necessary due to the unavailabil-
ity of embedded power measurement features and accurate
power models for the current computing systems. Predic-
tion allows us to abate the future penalty of present PM de-
cisions for changing the power and performance states of
a system. For example, choosing a power and performance
state higher than the required computational needs leads to
unnecessary excess power consumption, while choosing a
lower state results in significant performance loss. However,
the high complexity associated with a large number of inter-
operating hardware and software components makes it very
difficult to derive an analytical model to accurately estimate
or predict the system-level power consumption or perfor-
mance of a computing system. External measurement de-
vices partially alleviate the online power measurement chal-
lenge. However, they introduce a delay in sending the power
measurements to the PM programs, exacerbating its effec-
tiveness. Having such challenges in mind, a model that can
accurately estimate and predict the power consumption be-
comes indispensable in PM.

Modeling the relationships of PMCs, workload, and
power consumption of a system have been approached from
the architectural point of view previously [8–10, 13, 16, 17].
In an orthogonal approach, we examine such relationships
from a stochastic aspect. Although similar time series ap-
proaches have been used by researchers in other fields and
applications [18–20], we propose using the ARMA models
[12], as a promising candidate, for relating the power and
performance metrics to each other.

Figure 1 depicts the block diagram of our approach. It
consists of a power-performance model and an update algo-
rithm. ARMA or moving average (MA) models relate the in-
put and output values to each other via different coefficients.
Finding and adaptively updating these coefficients can be
done by different algorithms, such as RLS, KF, MVNR, etc.
After each time step, the modeling error is provided to the
coefficient update algorithm and the coefficients are adjusted
according to the objectives of the chosen algorithm.

This work contributes by proposing the use of ARMA
models jointly with the coefficient update algorithms, such
as RLS, to model the relationship between power and per-
formance in order to estimate and predict them. This sto-
chastic approach utilizes “both” the current and the past
PMC values in a model to estimate or predict the power con-
sumption or PMC values. Furthermore, our model integrates
feedback power measurements for more accuracy. The pro-
posed method is both platform-independent and application-
independent, and does not require tapping into the system’s
internal power supply lines.

We have conducted our experiments on a real multi-
core system, and gathered PMC values and system power

Fig. 1 Block diagram of the model and coefficient update algorithm

consumption measurements in real-time when running se-
rial and OpenMP [4] applications from the NAS Parallel
Benchmark (NPB) suite [3]. Using the proposed method,
our model can estimate the “dynamic part” of the system-
level power consumption for a set of serial and parallel
benchmarks with an average error of 8%. The models stud-
ied in this paper have the potential to predict the future PMC
and power consumption metrics based on their past val-
ues. We have evaluated the efficiency of this approach for
different coefficient update algorithms and different predic-
tion ranges. For example, on average, we are able to predict
the (65 time steps ahead) dynamic part of the system-level
power consumption of our benchmarks with an average error
of less than 11.1%. Similarly, we can predict the instructions
per cycle (IPC) of our benchmarks with less than 7% error.

The rest of the paper is organized as follows. In Sect. 2,
we review the related work. In Sect. 3, we introduce the
mathematical models and algorithms that we use in this pa-
per. Our experimental platform is described in Sect. 4. In
Sect. 5, we introduce a PMC-based power model, and dis-
cuss its sensitivity to feedback delay. Section 6 discusses our
performance and power prediction methods. In Sect. 7 we
investigate how the estimation model handles the extreme
cases. Finally, in Sect. 8, we make concluding remarks and
indicate some directions for future research.

2 Related work

Many researchers have used PMCs or a sort of access rate
metric in various energy models of computer systems or
some of its components [8, 10, 15, 17]. Contreras et al. [10]
estimate the power consumption of CPU and memory using
a first-order linear sum of PMCs. Joseph et al. [15] estimate
the runtime power dissipation of different units of a Pen-
tium Pro processor using PMCs combined with architectural
information provided by an architectural processor power
simulator. Rajamani et al. [17] have used PMCs to model
instantaneous performance and power of an Intel Pentium-
M processor. Their approach is platform-specific and needs
training data set through micro-benchmarking. Some re-
searchers [8] have found IPC metrics useful in power es-
timation techniques. Bircher et al. [8] have used linear re-
gression models to estimate the power consumption of a



Adaptive estimation and prediction of power and performance in high performance computing 179

single-core processor (Pentium 4). They report that IPC re-
lated metrics show a strong correlation with CPU power, in
particular the uops fetched per cycle metric. A downside of
many previous work is the necessity to tap the supply points
that power the processor to measure its power consumption.

Kalman filter [6] has been used in different ways to im-
prove power or energy efficiency: as a workload estimator
[7], as well as a resource management tool [14]. Jain et al.
[14] have looked at stream resource management from a fil-
tering point of view and have exploited KF in their solu-
tion. Bang et al. [7] have proposed a KF-based workload
estimation method for dynamic voltage scaling, where they
estimate the processing time of real-time multimedia work-
loads. The way we use KF in this paper is different from
[7, 14] as we are not estimating a workload or an unknown
value. We use KF as a coefficient update algorithm for an
ARMA model.

Time series prediction methods are well known and
widely used in financial and industrial problems, where
ARMA and autoregressive (AR) models are commonly uti-
lized along with system identification techniques. Some re-
searchers have applied them to computing systems [18–20].
Xu et al. [19] have studied predictive closed-loop control
techniques for systems management by comparing algo-
rithms based on AR models, combined analysis of variance
(ANOVA) and AR models, and a multi-pulse (MP) model.
Zhu et al. [20] as well as Wang et al. [18] have discussed the
strength of control theory approaches in computing systems,
where they use an ARMA model along with system iden-
tification experiments to capture the dynamic relationship
between the CPU allocation to a web server and its mea-
sured mean response time. To the best of our knowledge,
an ARMA model has not been used in modeling power and
performance relationships in computing systems.

Gurun et al. [11] have proposed a runtime feedback-
based full system energy estimation model for embedded
devices, where a moving average of order zero (i.e., MA(0)
model) of two or three hardware and software performance
counters is used to model communication or computation
energy consumption. The advantage of their approach is in
using recursive least squares linear regression with expo-
nential decay (RLS-ED) for finding and updating the model
parameters on-the-fly. Our work in this paper is substantially
different than [11] in that we are using an ARMA model that
is non-zero order for both the AR part and the MA part. The
MA part of our model incorporates the past PMC values,
while the autoregressive part of our model utilizes feedback
power measurement.

The core contributions of this paper with respect to the
previous work can be summarized as: (1) proposing the use
of a non-zero order ARMA model that takes into account
the previous power and PMC values in estimating and pre-
dicting the future values; (2) studying different coefficient

update algorithms to find the best algorithm that enables the
proposed time-series approach to adaptively adjust to the
behavior of the application and system; (3) engaging feed-
back power measurements in our model without a necessity
to intrusively tap into the internal power supply lines; and
(4) evaluating the efficacy and efficiency of our model on a
real multi-core system using HPC benchmarks.

3 Models and algorithms

In this section, we provide the mathematical background for
the models and algorithms that are used in this work.

3.1 ARMA and MA

Our estimation and prediction methodology in this paper
is based on autoregressive moving average models [12].
ARMA models are widely used in different fields, such as in
economic time series prediction, hydrology, dendrochronol-
ogy, etc. A general form of ARMA(p,q) represents a model
with p autoregressive terms (i.e., AR(p)) and q moving av-
erage terms (i.e., MA(q)) and is shown in (1). The Xi , c, εi ,
ψi , and θi are scalar variables.

Xt = c + εt +
p∑

i=1

ψiXt−i +
q∑

i=1

θiεt−i (1)

In order to estimate the parameters of our ARMA models
in this paper we use different algorithms, such as recursive
least-squares filters and Kalman filters, in addition to stan-
dard multivariate normal regressions.

3.2 The discrete-time Kalman filter

The Kalman filter is a recursive filtering algorithm that en-
ables us to estimate the state of a process [6]. It has been
extensively studied and used in different fields of science
and engineering. The Kalman filter estimation is done in a
way that the mean of the squared error is minimized. The KF
algorithm consists of a cycle of prediction and correction. In
the prediction phase, the process state in the upcoming time
step is estimated. In the correction phase, based on the ob-
served measurement the algorithm is adjusted for a better
prediction. The signal model consists of a process equation
shown in (2) and a measurement equation shown in (3).

xk+1 = Fkxk + wk (2)

zk = H ′
kxk + vk (3)

The state of process is shown by x ∈ R
n. The measure-

ment of process is shown by z ∈ R
m. The process noise is

shown by the random variable wk with normal distribution
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N(0,Q). The measurement noise is represented by the ran-
dom variable vk with normal distribution N(0,R). The ini-
tial process state x0 is N(x̄0,P0). The process noise {wk},
measurement noise {vk}, and the initial process state x0 are
jointly Gaussian and mutually independent. The n × n ma-
trix Fk relates the current state xk to the next state xk+1,
when there is no process noise. The m×n matrix H ′

k relates
the current state xk to the current measurement zk . The ma-
trix H ′

k is the transpose of matrix Hk . For conciseness, we do
not provide the solution to the KF algorithm. The interested
reader is referred to [6].

3.3 System identification using KF

In this part, we explain how KF can be used for finding the
coefficients a(1), . . . , a(n+m) of the scalar ARMA equation
using the system input measurements {uk} and system out-
put measurements {yk} as they become available overtime
in (4).

yk +
n∑

j=1

a(j)yk−j =
m∑

j=1

a(n+j)uk−j (4)

Let (4) describe the behavior of a system with constant
coefficients a(i), then with enough number of measurements
and solving a set of linear equations one can find those coef-
ficients. However, if the coefficients are varying or the equa-
tion is not fully modeling the system, in order to enable the
model to follow the changes, the coefficients of the ARMA
equation should be adaptively updated as new measurements
become available. By assuming that the coefficients in (4)
are changing overtime, we can rewrite the equation as (5).
A Kalman filter approach, among others, can be used for
finding and updating the coefficients. In short, the (m + n)
coefficients of the ARMA are assumed to be the state of a
process as in (6). The Fk of the KF as defined in (2) is set as
the identity matrix. The H ′ matrix is defined as a row vector
in (7). This method is explained in detail in [6].

yk +
n∑

j=1

a
(j)
k yk−j =

m∑

j=1

a
(n+j)
k uk−j + vk (5)

x
(1)
k = a

(1)
k , x

(2)
k = a

(2)
k , . . . , x

(n+m)
k = a

(n+m)
k (6)

H ′
k = [−yk−1 . . . − yk−n uk−1 . . . uk−m] (7)

3.4 Recursive least-squares filter

The RLS algorithm is used for finding the coefficients of
adaptive filters, and it recursively produces the least squares
of the error signal. Unlike many other adaptive filtering
methods that try to reduce the mean square error and re-
quire statistical information about the input or the desired

output signals, the RLS calculates a least squares error di-
rectly from the input and the desired output. This makes the
RLS filters a signal-dependent algorithm. The RLS filter is
computationally less intensive than the KF as it does not re-
quire any matrix inversion. It is noteworthy to mention that
a RLS filter can be reformulated as a KF as in (8). Details
can be found in [12].

xk+1 = λ−1/2xk, zk = H ′
kxk + vk (8)

4 Experimental framework

All the experiments in this paper are conducted on a Dell
PowerEdge R805 SMP server. The server has two quad-core
2.0 GHz AMD Opteron processors. The processors have
12 KB shared execution trace cache, and 16 KB L1 shared
data cache on each core. The L2 cache available for each
core is 512 KB. Each processor chip also has a shared 2 MB
L3 cache. Our system has 8 GB DDR-2 SDRAM (667 MHz)
memory.

Our measurement infrastructure consists of a Keithley
2701/7710 digital multi-meter (DMM), a shunt resistor, and
the node under measurement that performs the profiling
task. We measure the power consumption of the node by
measuring the voltage of the shunt resistor placed between
the wall power outlet and the node. Knowing the value
of the resistor, we first calculate the current and then the
power and energy consumption of the node. We read 3
AC-voltage samples per second. In the DMM, the signal
first goes through an internal analog RMS-converter, where
1000/60 DC samples are read out and averaged for each AC
sample. The power measurements are validated with another
industry-made power meter, Wattsup, and the measurement
error is less than 1%.

The operating system is Ubuntu Linux, running kernel
version 2.6.28.9 patched with the perfctr library ver-
sion 2.6.39 for PMC measurement purposes. In our tests,
the measured events are: Dispatch stalls, memory controller
page access event, retired ×86 instructions, and cycles with
no FPU ops retired. Our event selection is roughly based on
previous research on modeling power by PMCs. We run an
application program on the node along with the PMC pro-
filing code which is synchronized with the power measure-
ment software. The overhead of the PMC profiling code and
the power measurement software is shown to be minimal.

We use a number of serial and OpenMP applications from
the NAS parallel benchmarks (NPB) [3] suite in our study.
These applications consists of NPB-3.3-SER benchmark
suite (BT.A, BT.B, CG.B, EP.B, FT.B, LU.A, LU.B, SP.A,
SP.B, UA.A, and UA.B) and NPB-3.3-OMP (BT.C, CG.C,
LU.B, SP.C, UA.B, and BT.B) running with eight threads. We
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have chosen those applications in class B and C of NPB-3.3
that run for longer than 100 seconds on our system, in order
to have sufficient samples to compare the algorithms used in
this study. In the serial applications, we set the affinity of the
application process to only one core.

As stated earlier, the methodology proposed in this paper
consists of a model and an update algorithm. The six differ-
ent combinations of models and algorithms that we study in
this paper are as follows. An ARMA model of order (4,4)

equipped with the RLS, KF, MVNR, and block MVNR up-
date algorithms, which are referred to as RLS, KF, MVNR,
and BMVNR, respectively. The BMVNR algorithm is an al-
gorithm similar to MVNR, except that it only looks at a fixed
size block of information, unlike MVNR that uses the whole
trace. We also use a MA of order zero model equipped with
the RLS update algorithm (similar to [11]), which we de-
note it as MA-0 in this paper. The combination of a zero-
order MA model and a MVNR update algorithm, when ap-
plied to the entire signal profile in advance, is referred to
as “Oracle” (similar to [8]). Oracle is a non-adaptive and a
non-causal algorithm and is merely implemented here for
comparison purposes. It should be mentioned that the es-
timation and prediction algorithms are performed offline in
MATLAB. We are currently integrating them within the sys-
tem.

5 Power estimation using ARMA

In the previous sections, we discussed how an ARMA (or
MA) model can be equipped with an update algorithm for
adaptively tuning its coefficients. In this section, we put this
idea into practice. We apply power and PMC traces of differ-
ent benchmarks to different configurations of a model with
an update algorithm to evaluate their effectiveness in model-
ing and relating the power and performance trends. In fact,
we are examining if power consumption is linearly related
to previous power measurements, as well as linearly related
to the current and past PMCs. We model this relationship as
an ARMA model in (10) where P[t] represents the power
measurement of the system at time t .

P[t] =
jmax∑

j=1

α0,j cj [t] = A0C′[t] (9)

P[t] +
n∑

i=1

βiP[t − i] =
m∑

i=0

AiC
′[t − i] (10)

We define C[t] as a row matrix that contains the PMC
values at time t and can be shown as [c1[t], . . . , cjmax[t]].
There are jmax PMCs used in the model (jmax = 4). The
j th performance monitoring counter measurement at time

t − i is linearly related to the current power consumption
measurement P[t] via a coefficient αi,j . We define Ai as
a row matrix that contains the αi,j coefficients and can be
shown as [αi,1, . . . , αi,jmax ]. A past power measurement at
time t − i is related to the current power measurement via
a coefficient βi . The time window that (10) covers includes
the current and m previous PMC measurements, as well as
the past n power measurements.

We gather the power and PMC profile of different NPB
benchmarks and estimate the power consumption using the
six combinations of our models and algorithms explained in
Sects. 3 and 4 in order to evaluate their effectiveness. The
model parameters used in the following results are: m = 4,
n = 4, and jmax = 4 as mentioned in (10). The PMC events
used in our tests are: dispatch stalls, memory controller page
access event, retired ×86 instructions, and cycles with no
FPU ops retired. In case of the MA(0) model, the power and
PMCs can be formulated as in (9).

5.1 Estimation results

Let power measurement P range between Pmin and Pmax.
One can split a power measurement into a dynamic part and
a static part, P = Pdynamic + Pstatic. If all the measurements
are larger than Pmin, then Pmin is a static part of the mea-
surements; Pdynamic = P − Pmin. One can use the total signal
to derive the percentage of the mean of absolute error of an
estimation method, in contrast to using the dynamic signal.
However, if the static part of the estimated signal is large,
the difference between the efficiency of the various estima-
tion methods will not be distinguished as much as when the
dynamic signal is taken into consideration. For complete-
ness, we report both the mean absolute error of dynamic
signal (MAEDS) and the mean absolute error of total sig-
nal (MAETS).

As an example, power measurements between 250 W and
300 W and a mean absolute error of estimation of 10 W,
yields a dynamic signal range of 50 W, static part of 250 W,
MAETS of 3.3% (10/300), and MAEDS of 20% (10/50).
Some estimation methods tend to have a “training” or “warm
up” period to become efficient, thus to avoid unfair com-
parisons we calculate the MAEDS and MAETS metrics us-
ing the measurements and estimation after the first hun-
dred samples. However, the whole signal profile has been
used for the estimation phase. In this paper we use the term
“overall average MAEDS (or MAETS)” that is calculated in
two steps: (1) calculating the MAEDS (or MAETS) of each
benchmark, (2) then calculating the average of the MAEDS
(or MAETS) among all the benchmarks.

A part of the measured runtime power and its estimate
for BT.C OpenMP application running with eight threads
is shown in Fig. 2 for all the six mentioned methods. The
block size for BMVNR is set arbitrarily to 75 samples in
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Fig. 2 Comparing power estimation of BT.C running with 8 threads using RLS, MVNR, BMVNR, KF, MA-0, and Oracle models

this paper. The MAEDS of BT.C.OMP.8 shown in Fig. 2
for RLS, MVNR, BMVNR, KF, MA-0, and Oracle meth-
ods is 4.8%, 6.1%, 5.0%, 5.0%, 12.7%, and 14.9%, respec-
tively. For most of the application traces, RLS is the best
method in terms of estimation error. The overall average of
MAEDS for all the applications studied in this paper for
RLS, MVNR, BMVNR, KF, MA-0, and Oracle methods is
8.0%, 8.1%, 8.2%, 8.5%, 15.6%, and 19.5%, respectively.
Similarly, the overall average of MAETS among all the ap-
plications for RLS, MVNR, BMVNR, KF, MA-0, and Or-
acle models is 0.62%, 0.67%, 0.70%, 0.68%, 1.26%, and
1.46%, respectively.

We present the MAEDS and MAETS metrics for all the
applications and the overall average in Fig. 3. The mini-
mum and maximum error when using MAEDS among all
the applications are 3.4% and 41.5%, respectively. One
can notice the excellent efficiency of the ARMA (4,4)

model when combined with RLS, for estimating the power
consumption. The order of the ARMA model has an im-
pact on the error levels and computation time. For ARMA
models of an order larger than four, we did not observe
a significant improvement in efficiency. One can con-
clude that ARMA (4,4) is a good candidate for estimating
power.

5.2 Computation-time overhead

In order to have a real-time power estimation method inte-
grated in a system, such as the ones mentioned above, the
estimation method requires to perform computation much
faster than the measurement sampling rate. An estimation
method, such as MVNR, that uses an increasing window
size of inputs from the beginning until the estimation time,
becomes slower over time, and therefore not suitable for in-
tegration in a system. To alleviate this problem, one can use
a fixed-size block for MVNR (e.g., BMVNR) to lower the
computational time of the MVNR method. The KF method
in principle should have a fixed computation size as it has
only a fixed number of matrix operations for each time step.
However, depending on the parameters of the ARMA, the
matrix inversion operations can be costly for the KF ap-
proach. In our simulation, the MVNR, BMVNR, and KF
methods ran 321, 37, and 117 times longer than the RLS
method for BT.C.OMP-8 shown in Fig. 2. The actual im-
plementation of RLS takes approximately 710 microseconds
per sample on our experimental system described in Sect. 4.

5.3 Sensitivity to measurement update delay

In this section, we investigate the impact of presence of a
delay in receiving some of the measurements in our ARMA
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Fig. 3 Mean absolute error of
power estimation (dynamic and
total signal) for different
applications using different
coefficient update algorithms

model (e.g. delay in receiving measurements from an ex-
ternal DMM). To include a time gap g between the current
samples and the previous samples, we rewrite the ARMA
equation of (10) as in (11), where �ij is defined as 1 − δij ,
and δij is the Kronecker delta, which by definition its value
is 1 for i = j ; 0, otherwise. In other words, �ij = 1 for
i �= j ; 0, otherwise.

P[t] +
n∑

i=1

βiP[t − i − g] =
m∑

i=0

AiC
′[t − i − g�i0] (11)

In Fig. 4 we present the impact of increasing the gap from
0 to 56 samples, with a step size of 8 samples, on over-
all MAEDS percentage of our applications. The increase in
overall MAEDS is under 4% for RLS, MVNR, and KF ap-
proaches, which shows the excellent delay tolerance of our
ARMA model.

6 Performance and power prediction using ARMA

In this section, we extend the notion of using an ARMA
equation as in (11) to model the performance behavior of
an application. In particular, we try to predict the number
of retired ×86 instructions per cycle in the upcoming time

steps for an application by using the past values of the same
metric, as well as other PMCs (i.e., dispatch stalls, memory
controller page access event, and cycles with no FPU ops
retired). For this purpose, we formulate this problem in the
form of an ARMA equations shown in (12) (note that both
sums start at i = 1). The PMC that we try to predict at time
step t is noted as M[t]. The matrix definitions here are sim-
ilar to the ones used in the previous sections.

M[t] +
n∑

i=1

βiM[t − i − g] =
m∑

i=1

AiC
′[t − i − g] (12)

A part of the predicted IPC at 65 steps ahead for SP.C
running with eight threads is shown in Fig. 5(a). For con-
ciseness, we only show the average MAEDS across all the
applications (except cg that has a very large error compared
to all other applications that we believe is due to its small
variance in its PMC values) in Fig. 6. The overall MAEDS
for our applications when predicting one time step ahead is
5.9%, 6.5%, and 5.6% for RLS, KF, and MVNR, respec-
tively. As we increase the gap between the prediction time
and the predicted sample we expect the error increases. The
proposed model shows a very good behavior in terms of er-
ror growth. For example, the overall MAEDS is under 7.0%
when predicting 65 samples ahead. This means that ARMA
is a great candidate for predicting PMC values.
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Fig. 4 Delay effect on mean absolute error using different coefficient
update algorithms

We use our ARMA model in (12) to predict the power
consumption of a system, with the difference that M[t] rep-
resents power in this case. A part of the predicted power at
65 steps ahead for SP.C running with eight threads is shown
in Fig. 5(b). One time step ahead prediction for all of our
applications (including cg) has an overall MAEDS value of
8.4%, 8.6%, 9.5% for RLS, KF, and MVNR, respectively.
The RLS method can predict power consumption with over-
all MAEDS of under 11.1% for prediction time distance of 1
to 65. One can notice in Fig. 6 that this prediction method is
able to keep a good efficiency for a large range of prediction
time gap (shown up to 64).

In summary, an ARMA model, when combined with up-
date algorithms, proves to be a promising candidate not only
for estimating power, but also capable of predicting future
power and PMC values. We find the ARMA-RLS combina-
tion as the best combination in our study, from both perfor-
mance and computation efficiency aspects.

7 Further investigation

Many HPC applications comprise of control structures that
make their behavior repetitive for some periods of their ex-
ecution time (e.g. loops). Such repetitive behavior of an ap-
plication makes the task of estimation or prediction easier.
Therefore, it is necessary to evaluate the efficiency of an es-
timation or prediction model under extreme cases. For in-
stance, a model can be challenged by the periods of time
that the behavior of the application varies significantly or the
system is in idle periods. For this purpose, we run multiple
benchmarks (ft.B, sp.B, cg.C, and lu.B) consecutively, with
a sleep period (three seconds) between every two bench-
marks. A part of the power estimation of ARMA-RLS and
its error for this test case is shown in Fig. 7. This allows us
to just focus on the extreme part of the trace. One can no-
tice that the estimation error increases as soon as the cg.C
benchmark ends. However, the model feedback adjusts the
increase in error to follow the power trend more accurately.
Although during the idle period the activity of the system

Fig. 5 IPC and power prediction for SP.C.OMP with 8 threads using
RLS, gap = 64 samples (i.e. 65 steps ahead)

is minimal and the PMCs are not changing significantly, the
power estimation follows the power measurements. When
the next application starts (i.e. lu.B), the PMCs are suddenly
changed and the estimates follow the new power trend.

The overshoot or undershoot in power estimation varies
based on the “experience” of the coefficient update algo-
rithm through the different parts of a trace. The RLS algo-
rithm, and some other algorithms, are data dependant. The
update algorithm changes the coefficients significantly if a
significant error is observed and each chosen set of the coef-
ficients almost result in a unique behavior of the estimator.
The presented extreme case result in Fig. 7 is just an ex-
ample scenario, keeping in mind that other traces result in
different worst case estimation errors (larger or smaller er-
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Fig. 6 Overall average of mean absolute error for different gap sizes
when predicting IPC and power

Fig. 7 Runtime power estimation of multiple applications (extreme
cases: idle period, and start/end of a benchmark)

rors). We are currently investigating the different aspects of
such extreme case handling by our proposed models.

8 Conclusions and future work

In this paper, we proposed the use of ARMA models for
modeling power and PMC relationships when running se-
rial and OpenMP applications. We used the RLS, MVNR,
BMVNR, KF, MA-0, and Oracle algorithms for adaptively
changing the coefficients of the ARMA, in order to over-
come the shortcomings of the linear modeling in capturing
the behavior of time-variant and non-linear HPC applica-
tions and systems. Our results showed that ARMA is an ex-
cellent model to estimate the current power consumption of
a system, and that it is not significantly sensitive to the delay
in receiving feedback measurement updates. The percentage
of the mean absolute error for the dynamic signal (MAEDS)
for all the NPB applications that we studied in this paper is
as low as 8.0% (for RLS). In fact, the combination of ARMA

and RLS provides the smallest errors and is the fastest in
terms of computation time.

Furthermore, we investigated how ARMA combined
with RLS, MVNR, or KF performs with respect to pre-
dicting the future IPC or power values. We find that this
approach is an excellent candidate for this purpose as we
achieved an overall MAEDS value of less than 7% and
11.1% for predicting IPC and power, respectively.

We extended our investigation to understand the effi-
ciency of ARMA-RLS in estimating power for some ex-
treme scenarios, such as the start or end of a benchmark or
the idle periods of the system. The results for such cases
vary based on the trace of the applications. We have real-
ized that the ARMA-RLS model is capable of maintaining
its efficiency in many cases. However, fine tuning is needed
during some extreme cases. We are currently studying dif-
ferent aspects on how to effectively handle such cases.

Our work in this paper is the first step in providing the
evidence that ARMA models combined with update algo-
rithms are excellent candidates for the estimation and pre-
diction of power and performance in HPC. We believe that
our estimation and prediction techniques can help allevi-
ate the challenges the PM systems face when using the dy-
namic voltage and frequency scaling technique. We are in
the process of integrating our model in real-time for dy-
namic power management decisions. We plan to extend this
work by incorporating the CPU frequency variable into the
proposed model. We also intend to experiment with MPI [2]
applications running on a cluster.
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