

Assessing the Ability of Computation/Communication Overlap and
Communication Progress in Modern Interconnects

Mohammad J. Rashti Ahmad Afsahi
Department of Electrical and Computer Engineering

Queen’s University, Kingston, ON, CANADA K7L 3N6
mohammad.rashti@ece.queensu.ca ahmad.afsahi@queensu.ca

Abstract

Computation/communication overlap is one of the
fundamental techniques in hiding communication
latency. Independent progress support in messaging
layer, network interface offload capability and
application usage of non-blocking communications are
believed to increase overlap and yield performance
benefits. In this paper, we analyze four MPI
implementations on top of three high-speed
interconnects (InfiniBand, Myrinet and iWARP
Ethernet) in their ability to support overlap and
communication progress. The results confirm that the
offload ability needs to be supported with
communication progress to increase the level of
overlap. Our progress engine micro-benchmark results
show that in all examined networks transferring small
messages makes an acceptable level of progress and
overlap. On the other hand, in most cases, transferring
large messages does not make progress independently,
decreasing the chances of overlap in applications.

1. Introduction

Overlapping computation with communication is
one of the basic techniques in hiding communication
latency, thereby improving application performance.
Using non-blocking communication calls at the
application level, supporting independent progress for
non-blocking operations at the messaging layer, and
offloading communication processing to the Network
Interface Cards (NIC) are the main steps in achieving
efficient computation/communication overlap.

NICs in modern interconnects are designed to
offload most of the network processing tasks from the
host CPU, providing excellent opportunity for
communication libraries such as Message Passing
Interface (MPI) [10] to hide the communication latency
using non-blocking calls. To utilize the offload engines
efficiently, non-blocking communications need to make

progress independently. While some MPI
implementations support independent progress, others
require subsequent library calls in order to make
progress in outstanding non-blocking calls. This may
have a significant impact on performance when a
computation phase follows a non-blocking call.

The main contribution of this paper is to better
understand the ability of contemporary interconnects
and their MPI implementations in supporting
communication progress, overlap and offload. We
analyze four MPI implementations on top of three
modern interconnects: Mellanox InfiniBand [9],
Myricom Myri-10G [13] and the recently introduced
NetEffect 10-Gigabit iWARP Ethernet [14]. We
conduct our experiments using micro-benchmarks for
both MPI non-blocking send and receive operations.
Since the MPI libraries under study use Eager and
Rendezvous protocols [11] to transfer small and large
messages respectively, we analyze the results for small
and large messages separately. The results suggest that
offloading helps to achieve high level of overlap in all
networks, if non-blocking calls make progress, at least
in data transfer.

The rest of this paper is organized as follows.
Section 2 provides an overview of the interconnects.
Related work is reviewed in Section 3. Section 4
describes our platform. Latency and bandwidth results
are presented in Section 5. Section 6 discusses the MPI
overlap ability of the interconnects. In Section 7, we
analyze the MPI communication progress behavior.
Finally, Section 8 concludes the paper.

2. Overview of Interconnects

2.1. Mellanox InfiniBand

InfiniBand (IB) is an I/O interconnection consisting
of end nodes and switches managed by a central subnet-
manager [7]. End nodes use Host Channel Adapters
(HCA) to connect to the network. IB verbs is the
lowest level of software to access the IB protocol

processing engine offloaded to the HCA. The verbs
layer has queue pair (QP) based semantics, in which
processes post send or receive work requests (WR) to
send or receive queues, respectively. The WR is used
by the user to send data from the source process address
space into the send queue, or to wait for a matching
data to arrive into the receive queue. A completion
queue associated with the QP is used by the hardware
to place completion notifications for each WR. IB
verbs require registration of memory buffers prior to
their usage.

Our IB network consists of 10Gb/s Mellanox
MHEA28-XT (MemFree) two-port HCA cards, each
with a PCI-Express (PCIe) x8 interface, connected to a
Mellanox 12-port 4X MTS2400-12T4 IB switch [9].
VAPI is the software interface for Mellanox HCA.

2.2. Myricom Myri-10G

The most recent Myricom product is the 10-Gigabit
Myri-10G networks, accompanied with MX-10G user-
level library [13]. The Myri-10G NICs are dual-
protocol cards that support 10-Gigabit Ethernet and 10-
Gigabit Myrinet. Myricom has its own Myri-10G
switches, but the NICs can also be used in an Ethernet
environment using standard 10-Gigabit Ethernet
switches. In addition to Myrinet network protocol
processing, Myri-10G NICs offload some Ethernet
network processing such as TCP checksum,
segmentation and re-assembly, but they are not full
TCP Offload Engines (TOE) [5]. The MX-10G library
has semantics close to MPI. Basic communication
primitives are non-blocking send and receive operations
that are directly used in the implementation of MPI.
The library registers user buffers internally.

We have used the single-port Myri-10G NICs
(10G-PCIE-8A-C) with 10GBase-CX4 ports [13], each
with a PCIe x8 interface. Myri-10G NICs are
connected to a Myricom Myri-10G 16-port switch.

2.3. NetEffect 10-Gigabit iWARP Ethernet

The RDMA consortium [17] has developed a set of
standard extensions to TCP/IP, collectively known as
iWARP. The specification proposes a set of descriptive
interfaces at the top layer, called iWARP verbs [6].
Verbs provide a user level abstract interface for direct
access to the RDMA enabled NIC (RNIC), which gives
more benefits than a simple TOE by offering direct data
transfer ability and OS bypass using RDMA. Verbs
have QP based semantics similar to IB network, and
require user buffers to be locked down before the data
transfer takes place.

Below the verbs layer, there is the RDMA Protocol
(RDMAP) layer that is responsible for performing

RDMA operations and supplying communication
primitives for remote memory access calls in verbs.
Below that is the Direct Data Placement (DDP) layer,
which is used for direct transfer of data from the user
buffer to the iWARP RNIC. The next layer, the
Marker PDU Aligned (MPA) layer is used to put
boundaries on DDP messages that are transferred over
the stream oriented TCP protocol.

Our iWARP network consists of the second-
generation NetEffect two-port NE020 10-Gigabit
Ethernet RNICs [14], each with a PCIe x8 interface and
CX-4 board connectivity. NetEffect verbs is the user-
level interface for NE020. A Fujitsu XG700-CX4 12-
port 10-Gigabit Ethernet switch is used to connect the
cards together.

Figure 1 depicts the block diagram of the NetEffect
NE020 RNIC [14]. It has a Virtual Pipeline
Architecture, which combines state-machine based
Protocol Engines, embedded cores, and a Transaction
Switch integrating iWARP, IPv4 TOE and NIC
acceleration logic in hardware. The NE020 has a
256MB on-board DDR2 memory bank. Utilizing its
multiple parallel protocol engines, the NetEffect RNIC
can support a large number of simultaneous iWARP
connections [14, 16]. The RNIC can be accessed using
user-level and kernel-level libraries such as NetEffect
verbs, OpenFabrics verbs, standard sockets, SDP,
uDAPL, and MPI.

Figure 1. NetEffect NE020 iWARP Ethernet
RNIC architecture (courtesy of NetEffect)

3. Related Work

A small body of work exists concerning the
analysis of overlap and communication progress in
contemporary networks [3, 2, 4, 19, 18]. In [3], the
authors have discussed the concept of independent
progress, offload and overlap, and compared the impact
of six MPI implementations on application performance
running on two platforms with Quadrics QsNet [15]
and CNIC network interface cards (used in ASCI Red

machine) [3]. Their results show that in almost all
benchmarks, the combination of offload, overlap and
independent progress significantly contributes to the
performance. The study in [2] concerns a similar work
on IB and Quadrics QsNetII [1]. Our work is along the
same direction as in [3, 2] with the difference that it is
focused at analyzing the ability of modern interconnects
and their MPI implementations in supporting
communication progress and overlap rather than an
application’s ability in leveraging them. Moreover, we
consider two state-of-the-art networks that have not
been discussed yet.

Among the work on measuring the overlap ability
of networks, the authors in [4] have proposed an
overlap measurement method for MPI. They first
compute the communication overhead, and then
application availability is calculated using the overhead
amount. The researchers in [18] have presented an
instrumentation framework to estimate the lower and
upper bounds on the achieved overlap for both two-
sided and one-sided communication over IB. While [8,
20] addresses combined send and receive overlap, our
proposed overlap measurement method in this paper,
along with [4, 19, 18] target non-blocking send and
receive overlaps separately.

On improving communication progress and
overlap, researchers have proposed RDMA Read based
Rendezvous protocols for MPI. They have achieved
nearly complete overlap and up to 50% progress
improvement relative to the RDMA Write Rendezvous
protocol [19].

4. Platform

We have conducted our experiments using two Dell
PowerEdge 2850 servers. Each machine is a dual-
processor Intel Xeon 2.8GHz SMP with 1MB L2-cache
per processor, 2GB total physical memory and an x8
PCIe slot. The machines run Linux Fedora Core 4
SMP for IA32 architecture with kernel 2.6.11.

The NetEffect iWARP MPI is based on MPICH2
version 1.0.3 [11] over NetEffect verbs 1.4.3. For
Myri-10G, we use MPICH-MX based on MPICH
1.2.7..1 [11]. For IB, we use MVAPICH2 version 0.9.5
and MVAPICH 0.9.8 [12] over VAPI library. To have
a fair analysis, our tests are done using single-port
communication. Based on Myricom’s advice, Myri-
10G cards were forced to work in the PCIe x4 mode for
effective performance on the nodes’ Intel E7520
chipset.

5. Latency and Bandwidth

Before analyzing the ability of overlap and
independent progress, we first investigate whether the

networks under study have comparable MPI
performance in terms of basic message latency and
bandwidth. For latency, we use the standard ping-pong
micro-benchmark. For bandwidth, we use a both-way
communication micro-benchmark in which two
processes simultaneously post a window of non-
blocking send calls followed by a window of non-
blocking receive calls.

Figure 2 shows the latency and bandwidth of the
four MPI implementations. It is evident that the
networks have comparable performance results, at least
in the same order of magnitude. Although NetEffect
iWARP has a considerably higher latency for small
messages, it offers higher bandwidth for large
messages. It is worth mentioning that the new iWARP
card outperforms its previous generation, NE010,
reported in [16]. Note that the low bandwidth for
Myrinet is primarily due to forcing the Myri-10G NICs
in PCIe x4 mode.

0

4

8

12

16

1 4 16 64 256 1K

La
te

nc
y (

µs
ec

)

Message size (bytes)

MPI Inter-node Ping-pong Latency
MVAPICH2 MVAPICH
MPICH-MX MPICH2-iWARP

0

400

800

1200

1600

2000

2400

1 16 256 4K 64K 1M

Ba
nd

wi
dt

h (
MB

/s)

Message size (bytes)

MPI Inter-node Both-way Bandwidth
MVAPICH2 MVAPICH
MPICH-MX MPICH2-iWARP

Figure 2. MPI latency and bandwidth

6. Computation/communication Overlap

In this section, we measure the overlap ability of
MPI implementations for both non-blocking send and
receive operations. In our tests, unlike the method used
in [4] we directly measure the amount of computation
that can be overlapped with communication.

In the send overlap micro-benchmark, the sender
uses a loop consisting of a synchronous non-blocking
send call, MPI_Issend(), to start the transfer, followed
by a computation phase. It then waits for the message

transfer to complete using MPI_Wait(). The receiver
blocks on an MPI_Recv(). Note that the timing is done
at the sender side.

In the receive overlap micro-benchmark, the
receiver posts a non-blocking receive call, MPI_Irecv(),
and then computes. It then waits for the
communication to complete using MPI_Wait(). The
sender blocks on an MPI_Ssend(). Timing is done at
the receiver side. Note in both overlap tests,
synchronous send operations are used to make sure that
the communication completes at the same time at both
ends in order to be able to calculate the overlap ability
for the whole communication period.

To calculate the overlap in each iteration m, we
measure the portion of performed computation that can
be fully overlapped with communication, without
affecting the communication time. Let l0 be the
communication time with no inserted computation, cm,
the computation time inserted in the iteration m, and lm,
the communication time of the iteration m. We
increase the amount of computation, cm, by 10% in each
iteration until 10% increase in the original
communication time, l0, is observed (the 10% values
are approximate numbers, selected based on empirical
observations). The last iteration is the largest m, with
lm < (1.1) l0 .

Figure 3 illustrates the timing model of our overlap
micro-benchmark. In this Figure, t1 is the time period
that the non-blocking send/receive call is active. In
fact, the host CPU is busy with communication
processing during t1. Obviously, the best-case scenario
is when the non-blocking call is able to start the
communication in the NIC offload engine, before
returning from the call. The t2 period starts when the
non-blocking call returns. In this period, the NIC is
performing the data transfer using its offload engine,
and the CPU is available for computation. Clearly, t2 is
the upper bound for overlap. The t3 period is the time
that the progress engine, called by MPI_Wait(), will
complete the communication. It starts right after the
computation phase (cm) or the offload phase (t2),
whichever finishes later.

Basically, the original communication latency can
be calculated using Equation (1). Obviously, if the
computation phase in iteration m (cm) is smaller than t2,
it will be fully overlapped with the communication, and
therefore lm would be equal to l0, as in Equation (2). It
is clear that the overlapped computation amount is
equal to cm. On the other hand, if cm is greater than t2
(not shown in Figure 3), since no more than t2 time is
available for overlap, the start of t3 period will be
delayed, consequently increasing the lm, as in Equation
(3). Clearly, in this case, the overlap time is equal to t2.

3210 tttl ++= (1)

0321 ltttlm =++= (2)

31 tctl mm ++= (3)

Using the above equations for iteration m, one can
derive the overlap time for either of the discussed cases,
as cm - (lm- l0). Therefore, the overlap ratio is:

0

0)(_
l

llcratiooverlap mm −−= (4)

Figure 3. Timing model for overlap benchmark

6.1. Send Overlap Observations

Figure 4 illustrates the send and receive
computation/communication overlap ability of the
networks with their MPI implementations. One can
observe a different behavior for small (Eager range)
and large (Rendezvous range) messages. For sending
Eager size messages, all networks show a high level of
overlap ability that reflects the contribution of
offloaded network processing as well as MPI progress
(see Section 7.1 for more details). In our platform, the
Eager protocol is used for messages up to 5980 bytes,
131052 bytes and 32KB in MVAPICH/MVAPICH2,
MPICH2-iWARP and MPICH-MX, respectively.

For the Rendezvous protocol, MPICH-MX,
MVAPICH and MPICH2-iWARP maintain their high
overlap ability. In the MPICH2-iWARP case, after a
sharp decrease for 64KB messages (mostly due to
buffer copy cost) the overlap ability increases from
128KB and approaches 100% for 1MB messages. This
is because in the Rendezvous protocol, after a one-way
handshake from the sender, called Request To Send
(RTS), the receiver uses RDMA Read to retrieve the
message from the sender’s memory, and therefore the
sender is almost free during this operation. The same
story applies to MVAPICH over IB [19]. In MPICH-
MX, data is transferred by a direct Get initiated by the
receiver using a progression thread, which makes both
the sender and receiver processors available [13].

Start
compute
phase

Start non-
blocking
Send/Recv

Return from
non-locking
call

Start
progress
engine

Communication
complete

 cm

End of
compute
phase

 lm

t1

t2

t3

0

20

40

60

80

100

1 16 256 4K 64K 1M

Pe
rc

en
ta

ge
 (%

)

Message size(bytes)

Send Overlap Ability
MVAPICH2 MVAPICH
MPICH-MX MPICH2-iWARP

0

20

40

60

80

100

1 16 256 4K 64K 1M

Pe
rc

en
ta

ge
 (%

)

Message size(bytes)

Receive Overlap Ability
MVAPICH2 MVAPICH
MPICH-MX MPICH2-iWARP

Figure 4. Computation/Communication overlap

On the other hand, the MVAPICH2 Rendezvous
protocol results show significant degradation where the
overlap becomes close to zero for very large messages.
This is primarily because MVAPICH2 uses a two-way
handshake protocol followed by RDMA Write for data
transfer [19]. In this protocol, the sender sends an RTS
to the receiver. The receiver will reply with a Clear To
Send (CTS) message that enables the sender to start the
data transfer. Therefore, when the sender enters a
computation phase after its non-blocking call, the
negotiation cycle (reception of CTS) remains
incomplete, delaying the start of data transfer until the
next MPI communication call at the sender side.

6.2. Receive Overlap Observations

In both iWARP and IB networks, shown in Figure
4, a high level of overlap ability exists for the MPI
receive operation up to Eager/Rendezvous switching
point. After the switching point, this overlap ability
drops and becomes close to zero for 1MB messages.
Obviously, for large messages, the non-blocking calls
do not start the data transfer, serializing computation
and communication phases. This could be due to
inefficiencies in MPI progress engine as well as the
Rendezvous protocol.

A different behavior is observed though for
Myrinet network. For the Eager case, the overlap
ability, in the range of 30%-75%, increases after 1KB
messages (we are investigating the reason behind this).
For the Rendezvous case, since most of data transfer is

started with a progression thread [13], the receiver CPU
is free during the data movement.

7. Communication Progress

Communication progress is called independent if a
pending non-blocking communication can make
progress without subsequent library calls. This ability
helps to overlap the on-going communication with
computation. The level of independent progress
depends on the communication protocols, the progress
engine and the underlying hardware offload support.

Generally, the progress can be made in protocol
negotiations and/or data transfer. Inevitably, with the
existence of offload, data movement can proceed
independently from the host CPU. However, the start
of data transfer and the completion of communication
protocol may still need further library calls. In such a
case, even in the existence of offload, any computation
phase that follows a non-blocking call may delay the
progression of the communication protocol that has
already been started by the non-blocking call.

7.1. Sender Side Progress

In our send progress micro-benchmark, the sender
invokes a non-blocking send call after synchronization
with the receiver. It then spends a certain amount of
time in a synthetic delay routine. Unlike the tests for
measuring overlap, the inserted computational delay is
chosen to be longer than the basic message latency to
clearly highlight the progress ability. After the delay,
MPI_Wait() is called for the completion of the send
request. At the other end and after synchronization, the
receiver calls a blocking receive operation. The overall
receive latency is recorded for several inserted delay
values for each message size. If the latency is increased
by the inserted delay, then the communication has not
made progress independently.

Figure 5 depicts the measured results for the send
communication progress in the four MPI
implementations. For MVAPICH2 and MPICH-MX,
the latency for Eager size messages is not affected by
the inserted delay. This shows that the communication
completes during the delay time without any
subsequent MPI calls at the sender side. This applies to
MPICH2-iWARP and MVAPICH, however for all
message sizes including those in the Rendezvous
protocol range. The results for MPICH2-iWARP and
MVAPICH are in concert with their high send overlap
ability shown in Figure 4. In fact, using a one-way
handshake Rendezvous makes the sender-side CPU
free, after sending the RTS to the receiver.

On the other hand, for Rendezvous range of
messages in MVAPICH2 and MPICH-MX, the latency

is affected by the inserted delay, making the completion
of communication happen after the delay. Examining
the details of latency values for different inserted delays
shows that for all affected cases only a portion of the
original message latency remains after the inserted
delay. For example in the MPICH-MX case, 15 to 35
percent of the original communication time for 64KB
messages remains after the inserted delay. This post-
delay work value for MVAPICH2 is as high as 84% of
the original latency for 32KB messages. This shows
that both MPICH-MX and MVAPICH2 do not have
perfect independent progress for sending large
messages.

High post-delay work values for MVAPICH2
imply that even the data movement is affected. This is
mostly due to the fact that, even in the best-case
scenario, both send and receive non-blocking calls are
consumed for Rendezvous negotiation (RTS and CTS
messages), leaving the data transfer for future progress
engine calls. This is in harmony with the justification
for MVAPICH2 send overlap behavior in the
Rendezvous range (Section 6.1).

On the other hand, the relatively low values of post-
delay work and high send overlap ability for Myrinet
suggest that the large message data transfer makes
progress during the computation phase, despite some
post processing work that remains after the inserted
delay. The post processing includes a final data copy
and protocol finalization. The result for 64KB messages
when inserting 100µs delay confirms our argument. In
essence, the entire 100µs delay is overlapped with the
162µs message transfer latency and the delay-affected
latency becomes equal to the non-delayed latency.

The best Rendezvous progress results are for
MPICH2-iWARP and MVAPICH. Here, in a shortened
Rendezvous negotiation, the receiver retrieves the data
from the sender using RDMA Read upon reception of
RTS from the sender [19]. Therefore, the receiver can
start the data transfer, independently making progress
by utilizing offloaded protocol engine. That is why we
see a flat delay curve for large messages. The decrease
in latency with 100µs inserted delay relative to no delay
is speculated to be due to MPI_Wait() polling overhead
on the NIC. When there is no inserted delay, the wait
call polls the NIC continuously, affecting the
performance of RDMA Read request from the peer
process.

7.2. Receiver Side Progress

We run a similar test for the receive operation. The
timing measurement is again performed at the receiver
side. After a barrier synchronization, the receiver posts
a non-blocking receive call and enters a synthetic delay.
During the delay, it also checks for probable

completion of the message reception by examining the
receive buffer for a certain data value. This helps to
detect whether the message has been completely
received while the receiver is in the delay period. After
the delay, MPI_Wait() is called to complete the request.
At the send side, a blocking send is called after the
synchronization.

Results of the receive progress micro-benchmark
for MPI libraries under study are shown in Figure 6.
Clearly, none of the networks shows independent
progress for receiving Eager size messages, and their
completion is delayed by the inserted delay time. In
general, Eager size messages in MPICH are transferred
upon posting the MPI send call. The observed delay
effect is because the reception of the message is not
checked in the non-blocking receive call and is left to
the progress engine in future MPI calls. Thus, the
completion of the receive operation remains for the
time that we call MPI_Wait(), which is in fact after the
inserted delay.

Examining the details of receive latencies for
Eager-size messages in all networks confirms that only
a small portion of the original (non-delayed)
communication latency remains after the inserted delay.
For instance, the amount of post-delay work for
iWARP is up to 30% of the original message latency.
This implies that the actual data transfer has been
performed during the delay (using direct memory
transfer), but the post processing has remained for the
MPI progress engine, which is invoked after the delay.
This post processing includes finding the arrived
message in the unexpected queue, copying it into the
user buffer and finalizing the receive data structure.

The case for the Rendezvous protocol is quite
different. For MVAPICH, MVAPICH2 and MPICH2-
iWARP, the results look similar to that of Eager case,
but the latency details imply a different story. In fact,
all of the message latency remains after the inserted
delay. This means that, unlike the discussion in Section
7.1 for send progress, even the data transfer does not
start until the inserted delay ends. This is primarily
because the non-blocking (send or receive) call does
not find the Rendezvous control message (CTS or RTS)
to start the data transfer. These messages will be
recognized only at the next progress engine execution.

An interesting observation in Figure 6 is the flat
curve for receiving Rendezvous range messages in
Myrinet. This reflects significant offload ability of the
NIC and verifies that transferring large messages with
MX imposes a very small processor overhead on both
sides, primarily because of using a progression thread
which takes care of data transfer and protocol
negotiations [13].

0

600

1200

1800

2400

0 400 800 1200 1600 2000

La
te

nc
y (

µs
ec

)

Synthetic delay size (µsec)

MVAPICH2 Send Independent Progress
Msg_Size=1B Msg_Size=4KB
Msg_Size=8KB Msg_Size=16KB

0

10

20

30

40

50

0 400 800 1200 1600 2000

La
te

nc
y (

µs
ec

)

Synthetic delay size (µsec)

MVAPICH Send Independent Progress
Msg_Size=1B Msg_Size=4KB
Msg_Size=8KB Msg_Size=16KB

0

600

1200

1800

2400

0 400 800 1200 1600 2000

La
te

nc
y (

µs
ec

)

Synthetic delay size (µsec)

MPICH-MX Send Independent Progress
Msg_Size=1B Msg_Size=16KB
Msg_Size=32KB Msg_Size=64KB

0

30

60

90

120

150

0 400 800 1200 1600 2000

La
te

nc
y (

µs
ec

)
Synthetic delay size (µsec)

MPICH2-iWARP Send Independent Progress

Msg_Size=1B Msg_Size=16KB
Msg_Size=64KB Msg_size=128KB

Figure 5. MPI send progress results

8. Conclusions and Future Work

In this paper, we assessed the ability of modern
cluster interconnects with offload capability and their
MPI libraries for computation/communication overlap
and communication progress. In terms of overlap, all
of the MPI libraries are able to overlap computation
with sending small messages that are transferred
eagerly. All libraries, except MVAPICH2, also show a
high level of overlap ability for sending large messages.
However, not a significant portion of the time for
receiving large messages using MPICH2-iWARP and
MVAPICH, receiving small messages using MPICH-
MX and sending/receiving large messages using
MVAPICH2 can be overlapped with computation.

The MPI communication progress results confirm
that without independent progress (at least in data
transfer) we cannot achieve high level of overlap.
MPICH2-iWARP and MVAPICH that have shown a
good send overlap ability show independent progress
for send operation as well. Myrinet also shows a good
progress for send especially for small messages,
although not fully independent. MVAPICH2 shows the
worst progress results for sending large messages just
like its send overlap ability.

All networks show some level of receive progress
for small messages, although it is just in data transfer.

MPI over iWARP and IB show poor receive progress
for large messages because the Rendezvous negotiation
(reception and recognition of RTS at the receiver side)
does not complete in non-blocking calls, preventing the
data transfer to start. Myrinet has the best receive
progress in this range due to the existence of an
independent progression thread.

As for the future work, we intend to devise novel
MPI communication protocols that could address the
deficiencies in the current MPI implementations,
highlighted in this paper.

9. Acknowledgments

The Authors would like to thank NetEffect for the

resources to conduct iWARP tests and their technical
support. We acknowledge Myricom for providing the
Myrinet switch. We thank the anonymous referees for
their insightful comments. This research is supported
by the Natural Sciences and Engineering Research
Council of Canada through grant RGPIN/238964-2005,
Canada Foundation for Innovation’s grant #7154, and
Ontario Innovation Trust’s grant #7154. The first
author is also supported in part by Sun Microsystems of
Canada Scholarship in Computational Science and
Engineering.

0

600

1200

1800

2400

0 400 800 1200 1600 2000

La
te

nc
y (

µs
ec

)

Synthetic delay size (µsec)

MVAPICH2 Receive Independent Progress
Msg_Size=1B Msg_Size=4KB
Msg_Size=8KB Msg_Size=16KB

0

600

1200

1800

2400

0 400 800 1200 1600 2000

La
te

nc
y (

µs
ec

)

Synthetic delay size (µsec)

MVAPICH Receive Independent Progress
Msg_Size=1B Msg_Size=4KB
Msg_Size=8KB Msg_Size=16KB

0

600

1200

1800

2400

0 400 800 1200 1600 2000

La
te

nc
y (

µs
ec

)

Synthetic delay size (µsec)

MPICH-MX Receive Independent Progress
Msg_Size=1B Msg_Size=16KB
Msg_Size=32KB Msg_Size=64KB

0

600

1200

1800

2400

0 400 800 1200 1600 2000

La
te

nc
y (

µs
ec

)
Synthetic delay size (µsec)

MPICH2-iWARP Receive Independent Progress

Msg_Size=1B Msg_Size=16KB
Msg_Size=64KB Msg_Size=128KB

Figure 6. MPI receive progress results

10. References

[1] J. Beecroft, D. Addison, D. Hewson, M. McLaren, D.

Roweth, F. Petrini, and J. Nieplocha. QsNetII: Defining
high-performance network design. IEEE Micro, 25(4):34-
47, July-Aug. 2005.

[2] R. Brightwell, D. Doerfler and K.D. Underwood. A
comparison of 4X InfiniBand and Quadrics elan-4
technologies. In 2004 IEEE International Conference on
Cluster Computing (Cluster 2004), pages 193-204, 2004.

[3] R. Brightwell, R. Riesen and K.D. Underwood. Analyzing
the impact of overlap, offload, and independent progress for
Message Passing Interface applications. International
Journal of High Performance Computing Applications,
19(2):103-117, 2005.

[4] D. Doerfler and R. Brightwell. Measuring MPI send and
receive overhead and application availability in high
performance network interfaces. In EuroPVM/MPI 2006,
pages 331-338, 2006.

[5] W. Feng, P. Balaji, C. Baron, L.N. Bhuyan and D.K. Panda.
Performance characterization of a 10-Gigabit Ethernet
TOE. In 13th IEEE Symposium on High-Performance
Interconnects (Hot Interconnects 2005), 2005.

[6] J. Hilland, P. Culley, J. Pinkerton and R. Recio. RDMA
protocol verbs specification (Ver1.0), 2003.
http://www.rdmaconsortium.org/

[7] InfiniBand Architecture. http://www.infinibandta.org/
[8] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini, W. Yu,

D. Buntinas, P. Wyckoff and D.K. Panda. Performance
comparison of MPI implementations over InfiniBand,
Myrinet and Quadrics. In 2003 ACM/IEEE conference on
Supercomputing (SC 2003), 2003.

[9] Mellanox Technologies, Inc., http://www.mellanox.com/
[10] MPI: A Message-Passing Interface standard, 1997.

[11] MPICH and MPICH2. http://www-unix.mcs.anl.gov/mpi/
[12] MVAPICH. http://mvapich.cse.ohio-state.edu/
[13] Myricom, Inc., http://www.myricom.com/
[14] NetEffect, Inc., NetEffect NE020 10Gb iWARP Ethernet

channel adapter. http://www.neteffect.com/
[15] F. Petrini, S. Coll, E. Frachtenberg and A. Hoisie.

Performance evaluation of the Quadrics interconnection
network. Journal of Cluster Computing, 6(2):125-142, Apr.
2003.

[16] M.J. Rashti and A. Afsahi. 10-Gigabit iWARP Ethernet:
comparative performance analysis with InfiniBand and
Myrinet-10G. In 7th IEEE Workshop on Communication
Architecture for Clusters (CAC 2007), 2007.

[17] RDMA Consortium. iWARP protocol specification.
http://www.rdmaconsortium.org/

[18] A.G. Shet, P. Sadayappan, D.E. Bernholdt, J. Nieplocha
and V. Tipparaju. A performance instrumentation
framework to characterize computation-communication
overlap in message-passing systems. In 2006 IEEE
International Conference on Cluster Computing (Cluster
2006), pages 1-12, 2006.

[19] S. Sur, H. Jin, L. Chai and D.K. Panda. RDMA read based
rendezvous protocol for MPI over InfiniBand: design
alternatives and benefits. In 11th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP 2006), pages 32-39, 2006.

[20] R. Zamani, Y. Qian and A. Afsahi. An evaluation of the
Myrinet/GM2 two-port networks. In 3rd IEEE Workshop on
High-Speed Local Networks (HSLN’04), pages 734-742,
2004.

