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Abstract 
 

Computation/communication overlap is one of the 
fundamental techniques in hiding communication 
latency.  Independent progress support in messaging 
layer, network interface offload capability and 
application usage of non-blocking communications are 
believed to increase overlap and yield performance 
benefits.  In this paper, we analyze four MPI 
implementations on top of three high-speed 
interconnects (InfiniBand, Myrinet and iWARP 
Ethernet) in their ability to support overlap and 
communication progress.  The results confirm that the 
offload ability needs to be supported with 
communication progress to increase the level of 
overlap.  Our progress engine micro-benchmark results 
show that in all examined networks transferring small 
messages makes an acceptable level of progress and 
overlap.  On the other hand, in most cases, transferring 
large messages does not make progress independently, 
decreasing the chances of overlap in applications. 
 
 
1. Introduction 
 

Overlapping computation with communication is 
one of the basic techniques in hiding communication 
latency, thereby improving application performance.  
Using non-blocking communication calls at the 
application level, supporting independent progress for 
non-blocking operations at the messaging layer, and 
offloading communication processing to the Network 
Interface Cards (NIC) are the main steps in achieving 
efficient computation/communication overlap. 

NICs in modern interconnects are designed to 
offload most of the network processing tasks from the 
host CPU, providing excellent opportunity for 
communication libraries such as Message Passing 
Interface (MPI) [10] to hide the communication latency 
using non-blocking calls.  To utilize the offload engines 
efficiently, non-blocking communications need to make 

progress independently. While some MPI 
implementations support independent progress, others 
require subsequent library calls in order to make 
progress in outstanding non-blocking calls.  This may 
have a significant impact on performance when a 
computation phase follows a non-blocking call. 

The main contribution of this paper is to better 
understand the ability of contemporary interconnects 
and their MPI implementations in supporting 
communication progress, overlap and offload.  We 
analyze four MPI implementations on top of three 
modern interconnects: Mellanox InfiniBand [9], 
Myricom Myri-10G [13] and the recently introduced 
NetEffect 10-Gigabit iWARP Ethernet [14]. We 
conduct our experiments using micro-benchmarks for 
both MPI non-blocking send and receive operations.  
Since the MPI libraries under study use Eager and 
Rendezvous protocols [11] to transfer small and large 
messages respectively, we analyze the results for small 
and large messages separately.  The results suggest that 
offloading helps to achieve high level of overlap in all 
networks, if non-blocking calls make progress, at least 
in data transfer. 

The rest of this paper is organized as follows.  
Section 2 provides an overview of the interconnects. 
Related work is reviewed in Section 3.  Section 4 
describes our platform.  Latency and bandwidth results 
are presented in Section 5.  Section 6 discusses the MPI 
overlap ability of the interconnects.  In Section 7, we 
analyze the MPI communication progress behavior.   
Finally, Section 8 concludes the paper. 
 
2. Overview of Interconnects 
 
2.1. Mellanox InfiniBand 
 

InfiniBand (IB) is an I/O interconnection consisting 
of end nodes and switches managed by a central subnet-
manager [7].  End nodes use Host Channel Adapters 
(HCA) to connect to the network.  IB verbs is the 
lowest level of software to access the IB protocol 



 

processing engine offloaded to the HCA.  The verbs 
layer has queue pair (QP) based semantics, in which 
processes post send or receive work requests (WR) to 
send or receive queues, respectively.  The WR is used 
by the user to send data from the source process address 
space into the send queue, or to wait for a matching 
data to arrive into the receive queue.  A completion 
queue associated with the QP is used by the hardware 
to place completion notifications for each WR.  IB 
verbs require registration of memory buffers prior to 
their usage. 

Our IB network consists of 10Gb/s Mellanox 
MHEA28-XT (MemFree) two-port HCA cards, each 
with a PCI-Express (PCIe) x8 interface, connected to a 
Mellanox 12-port 4X MTS2400-12T4 IB switch [9].  
VAPI is the software interface for Mellanox HCA. 
 
2.2. Myricom Myri-10G 
 

The most recent Myricom product is the 10-Gigabit 
Myri-10G networks, accompanied with MX-10G user-
level library [13]. The Myri-10G NICs are dual-
protocol cards that support 10-Gigabit Ethernet and 10-
Gigabit Myrinet.  Myricom has its own Myri-10G 
switches, but the NICs can also be used in an Ethernet 
environment using standard 10-Gigabit Ethernet 
switches.  In addition to Myrinet network protocol 
processing, Myri-10G NICs offload some Ethernet 
network processing such as TCP checksum, 
segmentation and re-assembly, but they are not full 
TCP Offload Engines (TOE) [5].  The MX-10G library 
has semantics close to MPI. Basic communication 
primitives are non-blocking send and receive operations 
that are directly used in the implementation of MPI.  
The library registers user buffers internally. 

We have used the single-port Myri-10G NICs 
(10G-PCIE-8A-C) with 10GBase-CX4 ports [13], each 
with a PCIe x8 interface.  Myri-10G NICs are 
connected to a Myricom Myri-10G 16-port switch. 
 
2.3. NetEffect 10-Gigabit iWARP Ethernet 
 

The RDMA consortium [17] has developed a set of 
standard extensions to TCP/IP, collectively known as 
iWARP.  The specification proposes a set of descriptive 
interfaces at the top layer, called iWARP verbs [6].  
Verbs provide a user level abstract interface for direct 
access to the RDMA enabled NIC (RNIC), which gives 
more benefits than a simple TOE by offering direct data 
transfer ability and OS bypass using RDMA.  Verbs 
have QP based semantics similar to IB network, and 
require user buffers to be locked down before the data 
transfer takes place. 

Below the verbs layer, there is the RDMA Protocol 
(RDMAP) layer that is responsible for performing 

RDMA operations and supplying communication 
primitives for remote memory access calls in verbs.  
Below that is the Direct Data Placement (DDP) layer, 
which is used for direct transfer of data from the user 
buffer to the iWARP RNIC.  The next layer, the 
Marker PDU Aligned (MPA) layer is used to put 
boundaries on DDP messages that are transferred over 
the stream oriented TCP protocol. 

Our iWARP network consists of the second-
generation NetEffect two-port NE020 10-Gigabit 
Ethernet RNICs [14], each with a PCIe x8 interface and 
CX-4 board connectivity.  NetEffect verbs is the user-
level interface for NE020.  A Fujitsu XG700-CX4 12-
port 10-Gigabit Ethernet switch is used to connect the 
cards together. 

Figure 1 depicts the block diagram of the NetEffect 
NE020 RNIC [14]. It has a Virtual Pipeline 
Architecture, which combines state-machine based 
Protocol Engines, embedded cores, and a Transaction 
Switch integrating iWARP, IPv4 TOE and NIC 
acceleration logic in hardware.  The NE020 has a 
256MB on-board DDR2 memory bank.  Utilizing its 
multiple parallel protocol engines, the NetEffect RNIC 
can support a large number of simultaneous iWARP 
connections [14, 16].  The RNIC can be accessed using 
user-level and kernel-level libraries such as NetEffect 
verbs, OpenFabrics verbs, standard sockets, SDP, 
uDAPL, and MPI. 
 

 
Figure 1. NetEffect NE020 iWARP Ethernet 
RNIC architecture (courtesy of NetEffect) 

     
3. Related Work 
 

A small body of work exists concerning the 
analysis of overlap and communication progress in 
contemporary networks [3, 2, 4, 19, 18].  In [3], the 
authors have discussed the concept of independent 
progress, offload and overlap, and compared the impact 
of six MPI implementations on application performance 
running on two platforms with Quadrics QsNet [15] 
and CNIC network interface cards (used in ASCI Red 



 

machine) [3].  Their results show that in almost all 
benchmarks, the combination of offload, overlap and 
independent progress significantly contributes to the 
performance.  The study in [2] concerns a similar work 
on IB and Quadrics QsNetII [1].  Our work is along the 
same direction as in [3, 2] with the difference that it is 
focused at analyzing the ability of modern interconnects 
and their MPI implementations in supporting 
communication progress and overlap rather than an 
application’s ability in leveraging them.  Moreover, we 
consider two state-of-the-art networks that have not 
been discussed yet.  

Among the work on measuring the overlap ability 
of networks, the authors in [4] have proposed an 
overlap measurement method for MPI.  They first 
compute the communication overhead, and then 
application availability is calculated using the overhead 
amount.  The researchers in [18] have presented an 
instrumentation framework to estimate the lower and 
upper bounds on the achieved overlap for both two-
sided and one-sided communication over IB.  While [8, 
20] addresses combined send and receive overlap, our 
proposed overlap measurement method in this paper, 
along with [4, 19, 18] target non-blocking send and 
receive overlaps separately. 

On improving communication progress and 
overlap, researchers have proposed RDMA Read based 
Rendezvous protocols for MPI.  They have achieved 
nearly complete overlap and up to 50% progress 
improvement relative to the RDMA Write Rendezvous 
protocol [19]. 
 
4. Platform 
 

We have conducted our experiments using two Dell 
PowerEdge 2850 servers.  Each machine is a dual-
processor Intel Xeon 2.8GHz SMP with 1MB L2-cache 
per processor, 2GB total physical memory and an x8 
PCIe slot.  The machines run Linux Fedora Core 4 
SMP for IA32 architecture with kernel 2.6.11. 

The NetEffect iWARP MPI is based on MPICH2 
version 1.0.3 [11] over NetEffect verbs 1.4.3.  For 
Myri-10G, we use MPICH-MX based on MPICH 
1.2.7..1 [11].  For IB, we use MVAPICH2 version 0.9.5 
and MVAPICH 0.9.8 [12] over VAPI library.  To have 
a fair analysis, our tests are done using single-port 
communication.  Based on Myricom’s advice, Myri-
10G cards were forced to work in the PCIe x4 mode for 
effective performance on the nodes’ Intel E7520 
chipset.     

 
5. Latency and Bandwidth  
 

Before analyzing the ability of overlap and 
independent progress, we first investigate whether the 

networks under study have comparable MPI 
performance in terms of basic message latency and 
bandwidth.  For latency, we use the standard ping-pong 
micro-benchmark.  For bandwidth, we use a both-way 
communication micro-benchmark in which two 
processes simultaneously post a window of non-
blocking send calls followed by a window of non-
blocking receive calls. 

Figure 2 shows the latency and bandwidth of the 
four MPI implementations.  It is evident that the 
networks have comparable performance results, at least 
in the same order of magnitude.  Although NetEffect 
iWARP has a considerably higher latency for small 
messages, it offers higher bandwidth for large 
messages.  It is worth mentioning that the new iWARP 
card outperforms its previous generation, NE010, 
reported in [16].  Note that the low bandwidth for 
Myrinet is primarily due to forcing the Myri-10G NICs 
in PCIe x4 mode. 
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Figure 2. MPI  latency and bandwidth 

 
6. Computation/communication Overlap 
 

In this section, we measure the overlap ability of 
MPI implementations for both non-blocking send and 
receive operations.  In our tests, unlike the method used 
in [4] we directly measure the amount of computation 
that can be overlapped with communication. 

In the send overlap micro-benchmark, the sender 
uses a loop consisting of a synchronous non-blocking 
send call, MPI_Issend(), to start the transfer, followed 
by a computation phase.  It then waits for the message 



 

transfer to complete using MPI_Wait().  The receiver 
blocks on an MPI_Recv().  Note that the timing is done 
at the sender side.   

In the receive overlap micro-benchmark, the 
receiver posts a non-blocking receive call, MPI_Irecv(), 
and then computes.  It then waits for the 
communication to complete using MPI_Wait().  The 
sender blocks on an MPI_Ssend().  Timing is done at 
the receiver side. Note in both overlap tests, 
synchronous send operations are used to make sure that 
the communication completes at the same time at both 
ends in order to be able to calculate the overlap ability 
for the whole communication period. 

To calculate the overlap in each iteration m, we 
measure the portion of performed computation that can 
be fully overlapped with communication, without 
affecting the communication time.  Let l0 be the 
communication time with no inserted computation, cm, 
the computation time inserted in the iteration m, and lm, 
the communication time of the iteration m.  We 
increase the amount of computation, cm, by 10% in each 
iteration until 10% increase in the original 
communication time, l0, is observed (the 10% values 
are approximate numbers, selected based on empirical 
observations).  The last iteration is the largest m, with    
lm < (1.1) l0 . 

Figure 3 illustrates the timing model of our overlap 
micro-benchmark.  In this Figure, t1 is the time period 
that the non-blocking send/receive call is active.  In 
fact, the host CPU is busy with communication 
processing during t1.  Obviously, the best-case scenario 
is when the non-blocking call is able to start the 
communication in the NIC offload engine, before 
returning from the call.  The t2 period starts when the 
non-blocking call returns.  In this period, the NIC is 
performing the data transfer using its offload engine, 
and the CPU is available for computation.  Clearly, t2 is 
the upper bound for overlap.  The t3 period is the time 
that the progress engine, called by MPI_Wait(), will 
complete the communication.  It starts right after the 
computation phase (cm) or the offload phase (t2), 
whichever finishes later. 

Basically, the original communication latency can 
be calculated using Equation (1).  Obviously, if the 
computation phase in iteration m (cm) is smaller than t2, 
it will be fully overlapped with the communication, and 
therefore lm would be equal to l0, as in Equation (2).  It 
is clear that the overlapped computation amount is 
equal to cm.  On the other hand, if cm is greater than t2 
(not shown in Figure 3), since no more than t2 time is 
available for overlap, the start of t3 period will be 
delayed, consequently increasing the lm, as in Equation 
(3).  Clearly, in this case, the overlap time is equal to t2. 
 

3210 tttl ++=    (1) 

0321 ltttlm =++=    (2) 

31 tctl mm ++=    (3) 
 

Using the above equations for iteration m, one can 
derive the overlap time for either of the discussed cases, 
as cm - (lm- l0).  Therefore, the overlap ratio is: 
 

0

0 )(_
l

llcratiooverlap mm −−=  (4) 

 
Figure 3. Timing model for overlap benchmark 

 
6.1. Send Overlap Observations 
 

Figure 4 illustrates the send and receive 
computation/communication overlap ability of the 
networks with their MPI implementations.  One can 
observe a different behavior for small (Eager range) 
and large (Rendezvous range) messages.  For sending 
Eager size messages, all networks show a high level of 
overlap ability that reflects the contribution of 
offloaded network processing as well as MPI progress 
(see Section 7.1 for more details).  In our platform, the 
Eager protocol is used for messages up to 5980 bytes, 
131052 bytes and 32KB in MVAPICH/MVAPICH2, 
MPICH2-iWARP and MPICH-MX, respectively.  

For the Rendezvous protocol, MPICH-MX, 
MVAPICH and MPICH2-iWARP maintain their high 
overlap ability.  In the MPICH2-iWARP case, after a 
sharp decrease for 64KB messages (mostly due to 
buffer copy cost) the overlap ability increases from 
128KB and approaches 100% for 1MB messages.  This 
is because in the Rendezvous protocol, after a one-way 
handshake from the sender, called Request To Send 
(RTS), the receiver uses RDMA Read to retrieve the 
message from the sender’s memory, and therefore the 
sender is almost free during this operation.  The same 
story applies to MVAPICH over IB [19].  In MPICH-
MX, data is transferred by a direct Get initiated by the 
receiver using a progression thread, which makes both 
the sender and receiver processors available [13]. 
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Figure 4. Computation/Communication overlap 
 

On the other hand, the MVAPICH2 Rendezvous 
protocol results show significant degradation where the 
overlap becomes close to zero for very large messages. 
This is primarily because MVAPICH2 uses a two-way 
handshake protocol followed by RDMA Write for data 
transfer [19].  In this protocol, the sender sends an RTS 
to the receiver.  The receiver will reply with a Clear To 
Send (CTS) message that enables the sender to start the 
data transfer.  Therefore, when the sender enters a 
computation phase after its non-blocking call, the 
negotiation cycle (reception of CTS) remains 
incomplete, delaying the start of data transfer until the 
next MPI communication call at the sender side. 
 
6.2. Receive Overlap Observations 
 

In both iWARP and IB networks, shown in Figure 
4, a high level of overlap ability exists for the MPI 
receive operation up to Eager/Rendezvous switching 
point.  After the switching point, this overlap ability 
drops and becomes close to zero for 1MB messages.  
Obviously, for large messages, the non-blocking calls 
do not start the data transfer, serializing computation 
and communication phases.  This could be due to 
inefficiencies in MPI progress engine as well as the 
Rendezvous protocol. 

A different behavior is observed though for 
Myrinet network.  For the Eager case, the overlap 
ability, in the range of 30%-75%, increases after 1KB 
messages (we are investigating the reason behind this).  
For the Rendezvous case, since most of data transfer is 

started with a progression thread [13], the receiver CPU 
is free during the data movement. 
 
7. Communication Progress 
 

Communication progress is called independent if a 
pending non-blocking communication can make 
progress without subsequent library calls.  This ability 
helps to overlap the on-going communication with 
computation. The level of independent progress 
depends on the communication protocols, the progress 
engine and the underlying hardware offload support. 

Generally, the progress can be made in protocol 
negotiations and/or data transfer.  Inevitably, with the 
existence of offload, data movement can proceed 
independently from the host CPU.  However, the start 
of data transfer and the completion of communication 
protocol may still need further library calls.  In such a 
case, even in the existence of offload, any computation 
phase that follows a non-blocking call may delay the 
progression of the communication protocol that has 
already been started by the non-blocking call.  
 
7.1. Sender Side Progress  
 

In our send progress micro-benchmark, the sender 
invokes a non-blocking send call after synchronization 
with the receiver.  It then spends a certain amount of 
time in a synthetic delay routine.  Unlike the tests for 
measuring overlap, the inserted computational delay is 
chosen to be longer than the basic message latency to 
clearly highlight the progress ability.  After the delay, 
MPI_Wait() is called for the completion of the send 
request.  At the other end and after synchronization, the 
receiver calls a blocking receive operation.  The overall 
receive latency is recorded for several inserted delay 
values for each message size.  If the latency is increased 
by the inserted delay, then the communication has not 
made progress independently.  

Figure 5 depicts the measured results for the send 
communication progress in the four MPI 
implementations.  For MVAPICH2 and MPICH-MX, 
the latency for Eager size messages is not affected by 
the inserted delay.  This shows that the communication 
completes during the delay time without any 
subsequent MPI calls at the sender side.  This applies to 
MPICH2-iWARP and MVAPICH, however for all 
message sizes including those in the Rendezvous 
protocol range.  The results for MPICH2-iWARP and 
MVAPICH are in concert with their high send overlap 
ability shown in Figure 4. In fact, using a one-way 
handshake Rendezvous makes the sender-side CPU 
free, after sending the RTS to the receiver. 

On the other hand, for Rendezvous range of 
messages in MVAPICH2 and MPICH-MX, the latency 



 

is affected by the inserted delay, making the completion 
of communication happen after the delay.  Examining 
the details of latency values for different inserted delays 
shows that for all affected cases only a portion of the 
original message latency remains after the inserted 
delay.  For example in the MPICH-MX case, 15 to 35 
percent of the original communication time for 64KB 
messages remains after the inserted delay.  This post-
delay work value for MVAPICH2 is as high as 84% of 
the original latency for 32KB messages. This shows 
that both MPICH-MX and MVAPICH2 do not have 
perfect independent progress for sending large 
messages. 

High post-delay work values for MVAPICH2 
imply that even the data movement is affected.  This is 
mostly due to the fact that, even in the best-case 
scenario, both send and receive non-blocking calls are 
consumed for Rendezvous negotiation (RTS and CTS 
messages), leaving the data transfer for future progress 
engine calls.  This is in harmony with the justification 
for MVAPICH2 send overlap behavior in the 
Rendezvous range (Section 6.1). 

On the other hand, the relatively low values of post-
delay work and high send overlap ability for Myrinet 
suggest that the large message data transfer makes 
progress during the computation phase, despite some 
post processing work that remains after the inserted 
delay.  The post processing includes a final data copy 
and protocol finalization. The result for 64KB messages 
when inserting 100µs delay confirms our argument.  In 
essence, the entire 100µs delay is overlapped with the 
162µs message transfer latency and the delay-affected 
latency becomes equal to the non-delayed latency. 

The best Rendezvous progress results are for 
MPICH2-iWARP and MVAPICH. Here, in a shortened 
Rendezvous negotiation, the receiver retrieves the data 
from the sender using RDMA Read upon reception of 
RTS from the sender [19].  Therefore, the receiver can 
start the data transfer, independently making progress 
by utilizing offloaded protocol engine.  That is why we 
see a flat delay curve for large messages.  The decrease 
in latency with 100µs inserted delay relative to no delay 
is speculated to be due to MPI_Wait() polling overhead 
on the NIC.  When there is no inserted delay, the wait 
call polls the NIC continuously, affecting the 
performance of RDMA Read request from the peer 
process.  
 
7.2. Receiver Side Progress  
 

We run a similar test for the receive operation.  The 
timing measurement is again performed at the receiver 
side.  After a barrier synchronization, the receiver posts 
a non-blocking receive call and enters a synthetic delay. 
During the delay, it also checks for probable 

completion of the message reception by examining the 
receive buffer for a certain data value.  This helps to 
detect whether the message has been completely 
received while the receiver is in the delay period.  After 
the delay, MPI_Wait() is called to complete the request.  
At the send side, a blocking send is called after the 
synchronization. 

Results of the receive progress micro-benchmark 
for MPI libraries under study are shown in Figure 6.  
Clearly, none of the networks shows independent 
progress for receiving Eager size messages, and their 
completion is delayed by the inserted delay time.  In 
general, Eager size messages in MPICH are transferred 
upon posting the MPI send call.  The observed delay 
effect is because the reception of the message is not 
checked in the non-blocking receive call and is left to 
the progress engine in future MPI calls.  Thus, the 
completion of the receive operation remains for the 
time that we call MPI_Wait(), which is in fact after the 
inserted delay. 

Examining the details of receive latencies for 
Eager-size messages in all networks confirms that only 
a small portion of the original (non-delayed) 
communication latency remains after the inserted delay.  
For instance, the amount of post-delay work for 
iWARP is up to 30% of the original message latency.  
This implies that the actual data transfer has been 
performed during the delay (using direct memory 
transfer), but the post processing has remained for the 
MPI progress engine, which is invoked after the delay.  
This post processing includes finding the arrived 
message in the unexpected queue, copying it into the 
user buffer and finalizing the receive data structure. 

The case for the Rendezvous protocol is quite 
different.  For MVAPICH, MVAPICH2 and MPICH2-
iWARP, the results look similar to that of Eager case, 
but the latency details imply a different story.  In fact, 
all of the message latency remains after the inserted 
delay.  This means that, unlike the discussion in Section 
7.1 for send progress, even the data transfer does not 
start until the inserted delay ends.  This is primarily 
because the non-blocking (send or receive) call does 
not find the Rendezvous control message (CTS or RTS) 
to start the data transfer.  These messages will be 
recognized only at the next progress engine execution. 

An interesting observation in Figure 6 is the flat 
curve for receiving Rendezvous range messages in 
Myrinet.  This reflects significant offload ability of the 
NIC and verifies that transferring large messages with 
MX imposes a very small processor overhead on both 
sides, primarily because of using a progression thread 
which takes care of data transfer and protocol 
negotiations [13]. 
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Figure 5. MPI send progress results 

 
8. Conclusions and Future Work 
 

In this paper, we assessed the ability of modern 
cluster interconnects with offload capability and their 
MPI libraries for computation/communication overlap 
and communication progress.  In terms of overlap, all 
of the MPI libraries are able to overlap computation 
with sending small messages that are transferred 
eagerly.  All libraries, except MVAPICH2, also show a 
high level of overlap ability for sending large messages.  
However, not a significant portion of the time for 
receiving large messages using MPICH2-iWARP and 
MVAPICH, receiving small messages using MPICH-
MX and sending/receiving large messages using 
MVAPICH2 can be overlapped with computation. 

The MPI communication progress results confirm 
that without independent progress (at least in data 
transfer) we cannot achieve high level of overlap.  
MPICH2-iWARP and MVAPICH that have shown a 
good send overlap ability show independent progress 
for send operation as well.  Myrinet also shows a good 
progress for send especially for small messages, 
although not fully independent.  MVAPICH2 shows the 
worst progress results for sending large messages just 
like its send overlap ability. 

All networks show some level of receive progress 
for small messages, although it is just in data transfer. 

MPI over iWARP and IB show poor receive progress 
for large messages because the Rendezvous negotiation 
(reception and recognition of RTS at the receiver side) 
does not complete in non-blocking calls, preventing the 
data transfer to start.  Myrinet has the best receive 
progress in this range due to the existence of an 
independent progression thread. 

As for the future work, we intend to devise novel 
MPI communication protocols that could address the 
deficiencies in the current MPI implementations, 
highlighted in this paper. 
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