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Abstract—Graphics Processing Units have become the dominant
type of accelerators for high-performance computing and artificial
intelligence. To support these systems, new communication libraries
have emerged, such as NCCL, RCCL, and NVSHMEM, providing
stream-based semantics and GPU-Initiated Communication. Some
of the best performing communication libraries are unfortunately
vendor-specific, and may use load-store semantics that have been
traditionally underused in the application community. Moreover,
the Message Passing Interface (MPI) has yet to define explicit
GPU support mechanisms, making it difficult to deploy the
message-passing communication model efficiently on GPU-based
systems. However, MPI-4.0 introduced MPI Partitioned Point-to-
Point communication, which facilitates hybrid-programming models.
For example, Partitioned Communication is designed to allow GPUs
to trigger data movement through a persistent intra- or inter-node
channel. In this work, we extend MPI Partitioned to provide Intra-
Kernel GPU-Initiated Communication and Partitioned Collectives,
augmenting MPI with techniques used in vendor specific libraries.
We evaluate our designs on a NVIDIA GH200 Grace Hopper
Superchip testbed, to understand the benefits of GPU-Initiated
communication on NVLink and InfiniBand networks. We assess
the benefits at the application layer using a Jacobi solver and
Partitioned Allreduce with Deep Learning Kernels.

I. INTRODUCTION

Graphics Processing Units (GPUs) have become a dominant

form of accelerator for high-performance computing (HPC)

systems. From the June 2024 Top500 list, 9 of the top 10

supercomputers in the world use GPU-based platforms from

vendors such as AMD, NVIDIA, and Intel [1]. As a result,

applications in many domains such as Molecular Dynamics [2],

Drug Discovery [3], and Deep Learning (DL) [4] have been

adapted to use GPUs.
The Message Passing Interface (MPI) [5] is the de-facto stan-

dard for programming HPC machines. Multiple implementations

of MPI exist, including MPICH [6], MVAPICH2 [7] and Open

MPI [8]. MPI supports Point-to-Point, Partitioned Point-to-Point,

global collectives, neighborhood collectives, and remote memory

access (RMA) communication operations. Mirroring the advances
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in system design, MPI implementations have adapted to be GPU-

Aware [9], [10]. However, this has yet to be standardized.
MPI Partitioned Point-to-Point Communication is a new

addition to the MPI-4.0 Standard added in June 2021 [5] to

better support multi-threaded and heterogeneous systems. In this

new model, the send and receive buffers of a Point-to-Point

communication are partitioned into distinct chunks which can

be addressable by individual actors that are marked ready as

they become available. These buffers are persistent and can be

repeatedly used within an application’s life cycle.
Much of the existing literature on MPI Partitioned has been

on multi-threaded CPU workloads [10]–[16]. However, with

GPUs becoming the dominant form of accelerators for large

HPC systems, it is important that MPI Partitioned and MPI as a

whole to adapt to current trends. The standardization of GPU

bindings for MPI Partitioned is an active topic of discussion

within the MPI Forum Hybrid Working Group, but no consensus

has yet been reached [17]. For example, MPI Partitioned could

allow for GPU thread, warp, or blocks to mark data as ready,

but which one is most performant is an open question.
The goal of allowing for GPU-Initatied communication is

not limited to MPI Partitioned, as there is interest in Stream

synchronous communication within MPI [18]. Moreover, GPU-

Initiated has garnered interest by other programming models

and communication API such as NVSHMEM. In this paper, we

address these issues by exploring MPI Partitioned optimizations

on GPUs while still considering designs that could be applied

elsewhere. Specifically, we make the following contributions:

1) We provide the first MPI-Native implementation of MPI

Partitioned on GPUs and discuss the challenges with

designing a portable implementation;

2) We present the first MPI Partitioned Collective schedule

design and how this can be utilized by GPUs;

3) We investigate whether data should be signaled as ready to

send by a GPU at the level of thread, warp, or block, and

discuss the benefits of partition aggregation on GPUs;

4) And we evaluate the overheads of introducing several

additional API calls designed to facilitate GPU-initiated

communication under MPI Partitioned.

II. BACKGROUND

A. Compute Unified Device Architecture (CUDA)

CUDA is a general-purpose parallel programming model that

allows users to take advantage of NVIDIA GPU parallel compute

engines. The CUDA environment allows users to program in

C++ but CUDA can be interfaced with other languages such as

C or FORTRAN. CUDA helps solve some of the challenges of



transparently scaling applications in parallel environments. Other

GPU vendors such as AMD and Intel have their own equivalent

programming models and runtimes. However, we will focus on

NVIDIA in this paper but the general ideas are applicable to

other platforms.
One of the main components of CUDA programming are

kernels. These are similar to traditional functions in C/C++ but

they can be executed in parallel using many CUDA threads. Each

CUDA thread executes a kernel using its own thread ID. CUDA

applications concurrently transfer data and execute kernels via

the concept of streams. A stream can be thought as a First-In

First-Out (FIFO) queue of operations that will be executed in

the order they are placed in the queue. All streams or subgroups

of streams on a single device can be synchronized.

B. MPI Partitioned

1) MPI Partitioned Point-to-Point: MPI Partitioned Point-

to-Point Communication extends traditional MPI Point-to-

Point semantics by providing better cohesion with hybrid

programming models [5]. An application which uses MPI

Partitioned first initializes communication between endpoints

using MPI_Psend_init and MPI_Precv_init. This sets

up a communication channel between two processes based on

communicator, rank, tag, and the order in which they are posted.

The user also specifies how many partitions a buffer is split

into. Once the application is ready to communicate it calls

MPI_Start to notify the library.
MPI requires that a single thread execute the preceding

calls. Once MPI_Start executes, an application can enter

a parallel region which could be in the form of an OpenMP

block, POSIX thread, or a GPU kernel. The sender marks data

as ready in the parallel region by using MPI_Pready. For

example, each thread can mark a partition as ready, or multiple

threads contributing to the same partition can synchronize with

one thread that marks the partition ready. Marking data as ready

does not necessarily mean the data is sent at that moment;

the timing of when the data is actually sent is determined by

the MPI runtime. The receiver can, but is not required to, call

MPI_Parrived in a parallel region to check if a partition has

arrived.
Finally, in a single-threaded region, an application developer

can complete a partitioned transfer by calling MPI_Test or

MPI_Wait on the receiving process to check or wait for the

arrived data. Because MPI Partitioned is persistent, an application

developer could start a new transmission using the same buffer

simply by calling MPI_Start on the existing request and

then calling MPI_Pready on each partition as before. The

initialization calls are only called once during the lifetime of

the send and receive buffers.
2) GPU Support for MPI Partitioned: Currently, MPI +

CUDA programs require application developers to wait for

a kernel to complete before issuing a communication routine

such as MPI_Send. This is illustrated in Listing 1, where MPI

communication is initiated only after the kernel is executed

and the stream is synchronized. As we will see in Section III,

cudaStreamSynchronize is expensive and leaves the host

Listing 1: Host Pseudo Code for the Traditional MPI + CUDA

Model

kernel_A<<<stream>>>(sbuf);

cudaStreamSynchronize(stream);

MPI_Send(sbuf);

waiting on a CUDA kernel and unable to communicate. Moreover,

when MPI_Send is called the GPU is idle, unless a user uses

advanced overlapping techniques.
There has been significant discussion on accelerator support

in the MPI Forum Hybrid Working Group. Based in part on

this discussion, NVIDIA has developed an MPI Acccelerator

Extensions (MPI-ACX) prototype [19] that adds device bind-

ings to GPU Partitioned. Similar to MPI-ACX, we propose

MPIX_Pready, a GPU version of the existing MPI_Pready

function. This allows MPI to be called directly within a GPU

kernel and stream synchronization is not required to guarantee

communication has been completed.
However, even with a device-specific MPIX_Pready, there

exist challenges. In particular, according to the MPI standard,

initialization and start calls are non-blocking. Consequently, there

is no guarantee a receiver is ready to receive data. One solution is

to block on Pready until the receiver is initialized [10], but this

will stall the kernel, requires the GPU to handle progression, and

potentially increases the chance of deadlock [20]. An additional

challenge is that the sender could call MPI_Start a second

time to reuse a MPI Partitioned channel, but if the receiver is not

ready this would result in the receiver buffer being overwritten.
Currently, to address this issue there exists a proposal in

the MPI Forum Hybrid Working Group for an MPI extension:

MPIX_Pbuf_prepare [21]. The purpose of this proposed

API call is to provide a guarantee to the sender that the remote

buffer is ready to receive. The role of MPIX_Pbuf_prepare

is shown in Figure 1, where it is used to synchronize the

two processes. This prevents both of the issues outlined in the

previous paragraph.
An additional requirement for GPU-Initiated MPI Partitioned

is for MPIX_Pready to be callable from within a GPU kernel

[17]. One method for this is to define MPIX_Device as shown

in Listing 2. This allows MPI to have a generic execution space

specifier that the preprocessor would match to the vendor’s

implementation. For example, with AMD and NVIDIA GPUs,

MPIX_Device would be replaced with __device__. This

new MPIX_Pready call could mark data as ready or transfer

data directly within a GPU kernel.
For MPIX_Pready to mark data as ready, it is required

that the MPI_Request object be accessible by a GPU. One

solution is that an MPI library would allocate the required
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Fig. 1: A High Level Sequence Diagram Presenting GPU-Initiated

MPI Partitioned
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Listing 2: Device Pseudo Code for the Proposed GPU-Initiated

MPI Partitioned Model [19]

MPIX_Device int MPIX_Pready(int partition,

MPIX_Prequest preq);

__global__ int kernel_B(MPIX_Prequest preq,

double *sbuf)

{

int idx = threadIdx.x + blockDim.x * threadIdx.y;

/* Do Work */

MPIX_Pready(idx, preq);

}

__host__ int host_function(MPI_Request req,

double *sbuf)

{

MPI_Start(req)

MPIX_Pbuf_Prepare(req);

if (first_iteration)

{

MPIX_Prequest_create(preq, req);

}

kernel_B<<<stream>>>(preq, sbuf);

/* Do work on host */

MPI_Wait(req);

}

MPI_Request object and its substructures with unified

memory. However, this could pose challenges if a vendor

does not provide unified memory or if it is expensive to

use on a specific platform. Moreover, GPUs are generally

poor at pointer chasing. Ideally, a request would contain

only the necessary information for a GPU to conduct its

duties. This could be achieved by defining MPIX_Prequest

which would be a device specific request object for MPI

Partitioned [22]. The API call MPIX_Prequest_create

would take an MPI_Request object as an input and out-

put a MPIX_Prequest object. MPIX_Prequest_create

would have a corresponding MPIX_Prequest_free to free

the memory associated with the MPIX_Prequest object.
3) MPI Partitioned Collectives: Collective communication

is the natural extension to MPI Partitioned Point-to-Point

Communication as it helps simplify the movement of data

between groups of processes [23]. MPI Partitioned Collectives

follow the same general control flow as Point-to-Point but has

different initialization functions, e.g. MPIX_Pbcast_init,

MPIX_Pallreduce_init, etc. These correspond to the

equivalent MPI_Bcast and MPI_Allreduce communica-

tion patterns. During initialization time, as we have the message

size, communicator size, and partition count, we can initialize the

resource required to execute a specific collective algorithm. The

behavior of MPIX_Pbuf_prepare also changes slightly as

we now synchronize the processes associated with the collective

rather than just two ranks.

C. Unified Communication X (UCX)

UCX is a communication framework that abstracts many

communication primitives to effectively utilize a variety of

hardware [24]. The UCP API of UCX implements high-level

protocols that are used by other communication libraries such

as MPI. UCP supports Remote Memory Access (RMA), active

messages, and tag-matching operations, among others. In this

paper, we use the UCP RMA API for communication.

To use the UCP API, we must create a UCP Worker

which represents a communication context that encapsulates

communication resource and a progression engine. A Worker

object abstracts details regarding the hardware including the

network interface, network port, etc. A Worker also encapsulates

one or many Endpoints, which are used to address a remote

Worker (i.e., the target of an initiator). UCP communication

routines, such as ucp_put_nbx, use the endpoint address

to put data from source to the correct target. Details on how

UCX resources are mapped to MPI Partitioned will be further

discussed in Section IV-A.
Currently, UCX supports buffers in GPU Global memory,

however, it lacks any support for GPU-Initiated communication.

There is currently no method to initiate communication from

a GPU kernel or to setup a channel and trigger a data transfer.

The lack of support is not limited to UCX; libfabric defines a

FI_XPU_TRIGGER flag but it is not implemented. A recent

survey paper discusses these issues in greater depth [18]. These

limitations result in difficulty in providing a GPU-Initiated MPI

library. We address this in Section IV-A by proposing designs

for intra- and inter-node data transfers.

III. MOTIVATION

It is important for users to understand the costs involved

in CUDA-based applications. Figure 2 shows the cost of

cudaStreamSynchronize, as well as the cost of launch-

ing a simple vector addition CUDA kernel and synchro-

nization (see section V for system details). The cost of

cudaStreamSynchronize is consistently 7.8 ± 0.1µs
regardless of kernel size. For smaller kernels (grid sizes up to

256) the synchronization cost is anywhere between 71.6-78.9% of

the total time to execute a kernel. This is a significant overhead

to endure when sending data after a kernel has completed.

Synchronization is less impactful for larger kernels, for example,

a kernel with 128K grids, only 0.8% of its total execution time

is spent synchronizing. However, this can also be thought of as

the CPU being idle for 99.2% of the time the kernel is executing.

These lost CPU cycles or computation/communication overlap

potential are shown in the gray hashed area in Figure 2. It can

cost anywhere between 2.0µs and 933.4µs with the kernel sizes

we evaluated. These lost resources could be better utilized in CPU

compute, progressing communication, or even I/O to prepare

data for the GPU. Therefore, it is highly desirable to avoid

calling cudaStreamSynchronize during an application’s

execution.
Communication libraries providing GPU support are growing

evermore important with the growth in the popularity of GPU

systems. This has resulted in numerous GPU communication
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Fig. 2: The cost of cudaStreamSynchronize and the cost

of a kernel launch and synchronization for different grid sizes

with block size of 1024. The kernel is computing a vector

addition C = A+B
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libraries providing stream-based semantics and GPU-Initiated

communication such as RCCL, NCCL, NVSHMEM, etc. [25]–

[27]. However, it is important to have a vendor-neutral high

performance communication library to ease widespread compati-

bility of important applications and to support the large number

of existing applications currently in production use. In MPI-4.0,

MPI Partitioned Point-to-Point communication was introduced to

allow support with hybrid programming models. As discussed in

Section II-B2, GPU-Initiated MPI Partitioned could be a viable

programming model for GPUs because it allows for better overlap

between host and device code and avoids the costs associated

with calling cudaStreamSynchronize. This model allows

an application to reduce synchronization overheads for small

kernels and provide overlap for large kernels.

IV. DESIGN

Our design consists of a UCX-based MPI Partitioned Point-

to-Point library which provides GPU-Initiated communication as

discussed in Section IV-A. Partitioned Collectives are described

in Section IV-B. Our Partitioned Collectives are built upon our

Point-to-Point design.

A. UCX-Based MPI Partitioned Point-to-Point

The Modular Component Architecture (MCA) is used by Open

MPI to provide performance and compatibility to a wide variety

of networks and memory types [28]. Currently, both RMA and

Point-to-Point communication have a UCX component, however,

Partitioned Communication lacks a UCX component to optimize

this interface. In this paper, we propose a new Partitioned UCX

component for Open MPI with extensions for GPU-Initiated

communication.
This will reflect the high-level design in Figure 1 where

the MPI_{Psend, Precv}_init are used to begin ini-

tializing our communication resources. Then MPI_Start is

used to notify the MPI library that we are beginning our

communication epoch. MPIX_Pbuf_Prepare is used to

guarantee our communication resources are initialized. On

our first communication epoch MPIX_Prequest_create

is called to move communication resource to device memory.

Then our GPU kernel is launched where MPIX_Pready is

called to mark our data as ready. Finally, we wait for our

communication to complete with MPI_Wait. These steps will

be explained in further detail below.
1) MPI {Psend, Precv} init: On the first call into the MPI

Partitioned API, these initialization routines create a UCP context.

Each process also creates its own UCP worker and obtains a

worker address. The sender pre-populates the desired parameters

(ucp_request_param_t) for the ucp_put_nbx opera-

tion as we know the data size, the number of partitions, and

our destination. The sender also packs the relevant information

such as the tag, rank, and communicator which is used for

matching as well as the number of partitions, data size, worker

address, etc. into a ‘setup t’ object that is sent to the receiver

in a non-blocking fashion. The receiver posts a corresponding

receive operation. This is shown with 1 in Figure 1.
2) MPI Start, MPIX Pbuf prepare: MPI_Start simply

marks the requests as pending and sets the internal flags

to their default state. Thus far, there is no guarantee that

progress has occurred as per the MPI standard. The initial

call to MPIX_Pbuf_prepare is required to guarantee that

the receiver is ready. In the Progression Engine, the receiver

checks for the ‘setup t’ object, once it is received it unpacks

the data. Then we register the receive buffer and the internal

flags used for the partition status using ucp_mem_map and

ucp_rkey_pack. During the data transfer phase, the sender

will write to the partition status flags to notify the receiver that

communication for that partition has completed. Then it creates

a ‘setup t‘ object in response with the same parameters as

described in the initialization routines as well as the remote key

and remote address. This provides the necessary information for

the sender to be able to use RMA operations. Simultaneously, the

sender waits for the setup object response. Using the response,

it creates the relevant endpoints if they do not already exist and

unpacks the memory keys. After these steps are completed, the

sender can put data into the receiver. The subsequent calls to

MPIX_Pbuf_prepare are much simpler as the receiver sends

a ‘ready-to-receive’ signal and the sender waits for that signal.

No additional setup information transferred or initialization is

conducted. These steps are labeled as 2 in Figure 1.

3) MPIX Prequest {create, free}: These API calls are

required for specifically GPU-Initiated MPI Partitioned. We

allocate an MPIX_Prequest object in GPU global memory

that contains the minimal amount of information required by

the device for communication. This information includes the

type of copy mechanism (intra-node Kernel Copy, intra- and

inter-node Progression Engine copy), as well as a threshold

parameter specifying the number of CUDA threads that will be

aggregated into a single data transfer. The request also contains

a list of counters which are incremented until the threshold

value is reached. The threshold and counters enable the various

thread/warp/block partition aggregation schemes explored below.

For progression, a set of flags is created in pinned host memory

which are accessible by the device. These parameters are first

created in a host buffer then copied to the GPU once populated

as shown by 3 in Figure 1. MPIX_Prequest_free frees

the memory location in GPU global memory and frees the pinned

host memory, if applicable.

4) MPI Pready, MPI Parrived, MPIX Pready,

MPIX Parrived: These API calls have host and device

bindings. Here we first discuss the former and then describe

how the device bindings are built upon them. The host bindings

are used by the Progression Engine internally for the partitioned

collectives as shown in Line 25 of Algorithm 2.
The host’s call to MPI_Pready executes ucp_put_nbx

to send the data associated with that partition. This op-

eration uses the ucp_request_param_t previously pro-

vided by MPI_Psend_init. Attached to the callback of

the put operation is another ucp_put_nbx call which

marks a partition as received on the receiver side. This is

required so that MPI_Parrived can provide fine-grained

information on partition arrival. This additional control sig-

nal is required because UCX does not currently provide a

put operation that generates a receive side completion (cf.,

IBV_WR_RDMA_WRITE_WITH_IMM [10]).
For the device bindings, we have two copy mechanisms:

the Progression Engine and Kernel Copy approaches. For the

Progression Engine approach, a CUDA thread updates a flag

in host memory to notify the Progression Engine that an

MPIX_Pready call is pending. Upon detecting this notification,
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the MPI Progression Engine issues an MPI_Pready on the

host, as described in the previous paragraph. This mechanism is

similar to that proposed in MPI-ACX [19].
The number of threads within a CUDA kernel can be large

(e.g., a single block can have up to 1024 threads), and having a

large number of threads write into host memory can be quite

costly. Therefore, we implement aggregation at the thread, warp,

and block-level with specific bindings for the Progression Engine

approach to understand if there are any benefits of aggregating

partitions on GPUs. To evaluate thread-level bindings, we

created MPIX_Pready_thread where each thread updates

flags in host memory. This provides a baseline as well as

allowing us to understand how the approach used in MPI-ACX

[19] applies in this context. For our evaluation of warp-level

bindings, we implemented MPIX_Pready_warp which uses

__syncwarp() to ensure that when all warp-level memory

operations have been completed, the 0th thread writes the

completion notification into host memory. We use a similar

approach at the block-level with MPIX_Pready_block,

which uses __syncthreads() to coordinate within a block.

In addition to block-level bindings, we have counters in GPU

global memory that we atomically increment until a threshold is

hit, before writing into host memory. This allows the aggregation

of multiple blocks. As stated earlier, these counters are created

in MPIX_Prequest_create.
For the Kernel Copy approach, data is transferred di-

rectly from source to destination via NVLink within the

kernel without involving the host by using an assignment

statement. This is shown with 4.a in Figure 1. To execute

this transfer, we require an address mapped to the physical

address of the remote GPU. Currently, UCX exposes this

feature only to CPUs via the ucp_rkey_ptr API call. To

expose this feature for GPUs we modify UCX’s IPC transport

layer (specifically, uct_cuda_ipc_rkey_ptr), upon which

ucp_rkey_ptr relies. We use cuIpcOpenMemHandle to

open a memory handle from the remote process to expose

the mapped address with the appropriate memory offsets. The

same could be implemented for AMD GPUs using equivalent

ROCm API calls. The target memory address obtained through

ucp_rkey_ptr is placed in the MPIX_Prequest object

during MPIX_Prequest_create.
We must also send a control signal to the host 4.b so that it

can issue a completion to the receiver 5 . After the kernel has

completed its transfer we increment the counters in GPU global

memory until all threads have transferred data. Then we mark

partitions as ready and fall back to the host MPIX_Pready

for our completion signal.
For MPI_Parrived’s host binding we simply poll on the

receive-side completion flags. The device version polls a flag in

GPU global memory as the cost of accessing global memory

is much lower than host memory. However, as our receive-side

completion flags are always populated in host memory, we issue

a memory copy to the device in MPI_Wait as partitions arrive.

5) MPI Wait: Finally, when MPI_Wait is called, the sender

progresses any outstanding puts to ensure the callbacks are sent,

and the receiver counts the arrived flags until it matches the

number of partitions. Currently we only have a single thread

which progresses partitions.

B. MPI Partitioned Collective

Partitioned Collectives are implemented using the Point-to-

Point library described in the previous section. In this section, a

user partition is a partition that a user will see when using a

collective. A transport partition is a partition our collective

uses with regards to our Point-to-Point layer. The two can differ

due to the aggregation of multiple user partitions into a single

transport partition, for example.
1) MPIX P<collective> init: Similar to the Point-to-

Point API, the current MPI Partitioned Collective propos-

als have an initialization function for each collective (e.g.,

MPI_Bcast, MPI_Allreduce, etc.). In this paper, we

generalize these collective initialization calls and refer to

them as MPIX_P<collective>_init. Generalization of

Partitioned Collectives are incredibly important to consider as

the current proposals have at least 21 collectives that must be

implemented by MPI libraries [23]. As this is quite burdensome

for MPI developers, we take inspiration from MPI Neighborhood

Collectives and create a schedule for arbitrary communication

patterns [29]. Although our schedule is designed to be generic,

we will focus on a partitioned allreduce operation since we

investigate DL kernels in Section VI-D2.
During initialization, we allocate a request object, construct a

schedule (S) attached to the request, and add the request to a

queue used to track active requests to progress. The schedule

comprises a series of steps S = {S0, · · · , Sk} that are executed.

While a single schedule is created, each partition independently

executes that schedule and stores its current state.
Each step is a tuple Si = (I, R,⊕, O,A) including a set of

incoming neighbors I = {I0, · · · , In}, the MPI_Pready offset

R, an operation ⊕ that must be executed during that step, outgo-

ing neighbors O = {O0, · · · , On}, and the MPI_Parrived

offset A. The ⊕ corresponds to the MPI_Op associated with

a collective or a NOP. For example, an MPIX_Pbcast using

a binary-tree algorithm will consist of only NOPs, but an

MPI_Allreduce using a Ring-based reduce-scatter-allgather

algorithm will consist of an MPI_Op for the first P − 1 steps

and then a NOP for the remaining P − 1 steps.
Algorithm 1 shows the schedule creation for a Ring-based

reduce-scatter-allgather algorithm. For a given rank r, I is the

rank preceding r in the Ring, and O is the rank following r.

During the schedule construction, r calls MPI_Psend_init,

MPI_Precv_init on its outgoing and incoming neighbors,

respectively. Then in lines four and five, R and A offsets are

Algorithm 1: MPIX_Pallreduce_init schedule

creation for a Ring-Based RSA algorithm

1 for i← 0 to 2(P − 1) do

2 I ← (rank− 1) mod P
3 O ← (rank + 1) mod P
4 R← (rank + 2P − i) mod P
5 A← (rank + 2P − i− 1) mod P
6 if i < (P − 1) then ⊕ ←MPI Op ;

7 else ⊕ ← NOP ;

8 Si ← (I, R,⊕, O,A)
9 S← Si

10 end
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calculated. Creating a different offset for each step allows us to

pipeline the Ring algorithm using partitions. In Lines 6 and 7,

⊕ is set to true or false based on whether we are in the reduce

scatter or allgather portion of the collective.
2) MPI Pready, MPI Parrived: We first calculate the trans-

port partition index using the equation: transport partition =
(user partition ∗ user partition size)+R. The R value is associ-

ated with the step in the schedule as seen in Algorithm 1. Using

the calculated transport partition MPI_Pready is called as

described in Section IV-A4. For MPI_Parrived, we simply

read a flag in memory to see if the allreduce has been completed.
3) MPI Wait: Much of the Partitioned Collective is executed

in the Progression Engine as there are no progress guarantees for

calls other than MPIX_Pbuf_prepare. Algorithm 2 shows

how partitions are progressed in MPI_Wait.. The algorithm

iterates over the number of partitions in the collective, as each

partition has its own state. This allows for each partition to

progress to the next step of the collective independently. We first

check that we have not exceeded the last step in our collective

in Line 4 to minimize our progression overhead. Then we check

if the number of partitions that have arrived is the equal to the

number of incoming neighbors in Line 5. If this condition is

satisfied it would signify that all relevant data has arrived in

the current step of the algorithm for this partition’s state. If the

data is incomplete, we iterate over our incoming neighbors in

Algorithm 2: MPI_Wait Progression of a Partitioned

Collective Schedule

1 for part← 0 to num partitions do

2 state = states[part]

3 S ← state.step

4 if S > Sk then continue ;

5 if state.parrived complete ̸= |I| then

6 for Ix ∈ I do

7 MPI_Parrived(flag)

8 if flag = true then

9 state.parrived complete++

10 if ⊕ ≠ NOP then reduceData() ;

11 end

12 end

13 end

14 if state.parrived complete = |I| and

15 state.pready complete = |O|
16 then

17 S ← S(i+1)

18 state.parrived complete ← 0
19 state.pready complete ← 0
20 end

21 if S ̸= S0 and S! = Sk and

22 state.pready complete = 0
23 then

24 for Ox ∈ O do

25 MPI_Pready(...)

26 state.pready complete++

27 end

28 end

29 end

Lines 6-12. In this loop we individually check if the partition has

arrived for that neighbor, and reduce that data if applicable. The

algorithm is presented at a high level, and the implementation

details are omitted. In our particular implementation, we ensure

that the reduce operation is only executed once for each incoming

neighbor. Then in Line 14, we check if the number of partitions

that have arrived is equal to the number of incoming neighbors

and if the number of partitions marked as ready is equal to the

number of outgoing neighbors. If evaluated to be true, the current

step in the algorithm is complete. Therefore, we would move

to the next step (Si+1) in our Partitioned Collective schedule,

and reset our counters to zero. In Line 21, we check if any

MPI_Pready calls have been made. We verify that the state

is not S0 since the first MPI_Pready should be called by the

application programmer. We also check that we are kth step

(reaching the maximum number of steps in our algorithm) to

ensure we do not transfer any additional data unnecessarily.

V. EXPERIMENTAL PLATFORM

Our evaluation is based on a two-node NVIDIA GH200 Grace

Hopper Superchip testbed. Each NVIDIA Grace CPU has 72

ARM Neoverse V2 CPU cores with 120GB of LPDDR5X

memory [30]. This is combined with an NVIDIA Hopper

GPU that has 96GB of HBM3 memory. These two elements

are connected via the NVIDIA NVLink-C2C, which provides

a 900GB/s total bandwidth chip-to-chip interconnect. Each

node has four NVIDIA GH200 Grace Hopper Superchips. The

NVIDIA Hopper GPUs are connected with 18 NVLink 4 links per

device, resulting in an aggregate bandwidth of 900GB/s. Between

each GPU pair, there are 6 NVLink connections resulting in a

total uni-directional bandwidth of 150GB/s to each neighbor.

Each node is composed of four Mellanox ConnectX-7 network

cards (400Gbit). The software environment is NVHPC version

23.11. The GNU/Linux distribution is Ubuntu 22.04.2 LTS, with

GCC version 12.3.0, UCX master branch (commit bc85b70e6,

ca. March 19th, 2024), and Open MPI version v5.0.1rc1.
The GH200 platform differs from many other GPU systems

in production today. However, the conclusions drawn from

Section VI are still applicable to most other systems. For example,

most NVIDIA GPU-based systems have some form of NVLink

capability so our comparison for different copy methods would

easily apply to different contexts. The same would be true for

an AMD system as they have their own intra-node network,

Infinity Fabric.

VI. EXPERIMENTAL RESULTS

In our tests, each CUDA thread works on 8 bytes of data.

For example, for a kernel with 1024 CUDA threads, where

each contributes 8B to an allreduce operation, the total data size

is 8KiB. Goodput is used as an evaluation metric as we want

to understand the amount of useful work the GPU can do per

unit of time. Goodput is defined as the total amount of data

being processed divided the total execution time (computation

time + communication time). Goodput is a better metric than

bandwidth for this situation as it includes the cost of computation

and communication, and their overlap, rather than pure network

bandwidth which would be limited by hardware. Unless stated

otherwise, we use a vector addition C = A+B kernel as our

workload for our CUDA Kernels.
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We evaluate our design at the Point-to-Point, collective and

application-kernel layer. For the send/receive and traditional

MPI_Allreduce data points we measure the time to execute

computation, synchronization, and communication as shown in

Listing 1, then we calculate our Goodput. For our partitioned

test we measure time to execute the equivalent of Kernel_B

and MPI_Wait in Listing 2, then use this time to calculate

Goodput.

A. MPI Partitioned Point-to-Point

1) Device-Side Partition Aggregation: As noted in Section IV,

it is an open question whether there are benefits to aggregating

thread-level partitions into warp or block-level transport partitions.

In Figure 3, we evaluate the different aggregation strategies of

MPIX_Pready calls (thread-level (no aggregation), warp-level,

and block-level) for intra-node GPU-to-GPU communication,

from a single thread to the maximum block size for a GH200

(1024 threads). For a single thread, the cost is the same (within

error) for all three methods. This is also true for warp-level

and block-level aggregation up to 32 threads. In this block size

range, we have yet to fully occupy a warp. Above 32 threads, is

where we see the discrepancy grow between the warp-level and

block-level aggregation of our partitions. For a fully occupied

block, a block-level MPIX_Pready call costs 271.5x less than

at the thread-level and 9.4x less than the warp-level call. This is

due to the thread-level MPIX_Pready requiring 1024 writes

to memory and the warp-level requiring 32 writes, compared to

a single write for the block-level.
From this test, it is abundantly clear that there is a large perfor-

mance penalty for the finer-grained MPIX_Pready_thread

and MPIX_Pready_warp calls. That said, we believe that

each GPU thread should call MPIX_Pready to simplify the

programming model and that MPI should aggregate to the block-

level internally. We also investigated how to aggregate multiple

blocks, and those results showed that a single transport partition

was what provided the highest Goodput. Although this was

sufficient for this initial test, we will revisit this throughout our

evaluation.
2) Comparison with Different Communication Models: In

Section IV, we discussed two copy mechanisms for intra-node

copies, using a copy kernel and issuing a ucp_put_nbx via

the MPI Progression Engine. In Figure 4, we evaluate the two

copy mechanisms and compare them to the traditional model,

for intra-node communication. The maximum uni-directional

NVLink bandwidth is provided as a reference for the upper

bound of our Goodput value.
Using MPI Partitioned with the Progression Engine approach

outperforms traditional for all kernel sizes up to a grid size of
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Fig. 4: Results for two GH200 on a single node. Comparison

of MPIX_Pready copying data within a CUDA Kernel and

MPIX_Pready writing to a flag in memory where the MPI Pro-

gression Engine issues the copy, and using MPI_Send/Recv

2K. For larger grid sizes, the speedup is around 1.0x, thus there

is no benefit to this approach but there is also no performance

penalty. For smaller grid sizes we observe a maximum of 1.28x

improvement in Goodput. MPI Partitioned using the Kernel Copy

design outperforms both the Progression Engine design as well

as the traditional communication model for all kernel sizes. For

large kernels, such as 32K grids, we observe a 1.06x speedup

compared to the traditional communication model. The impact

is much larger for smaller kernels as we observe up to 2.34x

improvement in our Goodput.
In Figure 5, we compare GPU-Initiated MPI Partitioned to

traditional MPI Send/Recv for inter-node communication. The

benefits of GPU-Initiated MPI Partitioned are more significant

for inter-node communication. Similar to the intra-node case, the

largest performance improvement is seen for smaller kernels. For

one grid we observe a 2.80x improvement in Goodput. For the

largest grid we evaluated, we obtained a 1.17x higher Goodput.

Our performance improvements are better for the inter-node case

than the intra-node case as inter-node communication cost is

much higher, so the overlapping is more impactful. We found

for large kernels that aggregating into two transport partitions

provided the best performance.
For both intra- and inter-node scenarios we observed better

performance for smaller kernels. This is expected, as in Figure 2

we saw that the synchronization cost of the kernel would be up

to 78.9% of the total time to execute a kernel. GPU-Initiated MPI

Partitioned avoids this synchronization cost. Similarly this is why

the performance improvement for larger kernels is significantly

lower as we are not bound by synchronization.
One important consideration is that in the MPI standard,

MPI_Pready is described as ‘a send-side call that indicates that
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Fig. 5: Results for two GH200 on two nodes. Comparison of
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gression Engine issues the copy, and using MPI_Send/Recv
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a given partition is ready to be transferred’ [5]. Our implemen-

tation for the inter-node and the intra-node Progression Engine

approach adheres to this specification. For the intra-node case

where we use a Kernel Copy, we are in a gray area as we conduct

the data transfer within MPIX_Pready. However, the standard

does not explicitly state that this behavior cannot occur. Therefore,

if MPI were to adopt MPIX_Device MPIX_Pready this

should be clarified. This becomes more important with Partitioned

Collectives, as discussed in Section VI-B.

B. MPI Partitioned Collectives

In Figure 6 and Figure 7, we evaluate our Partitioned Collective

approach as applied to allreduce, and compare it to traditional

approaches as well as NCCL. The Ring algorithm is used in

all cases, as this algorithm is important in Machine Learning

contexts, and our goal is to observe the differences between

libraries/interfaces rather than algorithm design. Since the Ring

algorithm is used to maximize bandwidth for large messages, we

evaluate large kernel grid sizes. For multi-node experiments ranks

[0-3] and [4-7] are on the same nodes so that each processes’

neighbor is located optimally for all communication libraries.
For both the single-node and multi-node results, we see a

significant improvement in time required to execute a kernel

and communicate, when comparing MPI_Allreduce to the

partitioned allreduce. The time required for a partitioned allreduce

is multiple orders of magnitudes lower, a result that stems from

moving the communication initiation and the computation aspect

of our collective to the device.
When comparing the partitioned allreduce to NCCL, NCCL

does provide better performance for a single and two nodes. For

a kernel with 1K grid size, there is around 226.1µs between

the two libraries when executing the kernel and communicating.

This stems from our partitioned allreduce only marking data

as ready using MPIX_Pready. Specifically, in Line 10 in

Algorithm 2, there is an operation to reduce our data. If the

buffers for this collective were in host memory, this would

not cause any issues. However, as our buffers are in GPU

memory we are required to launch an additional kernel for our
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Fig. 7: Allreduce results for eight GH200s

reduction operation. This reduction is required to be completed

before we move on to the next step of the algorithm to have

numerically correct data. This results in the requirement of calling

cudaStreamSynchronize within the collective itself. How-

ever, this is still better than the the traditional MPI_Allreduce

as we remove cudaStreamSynchronize application code

to provide a better programming model for the user. This would

also apply to the partitioned variants of Reduce, ReduceScatter,

Scan, and ExScan,/ but this would not be an issue for collectives

such as Bcast or Gather which do not have a computation

component.
As discussed, the current proposed MPIX_Device

MPIX_Pready device bindings have some limitations such as

only being required to mark data as ready. We suggest that this

should be relaxed to allow for computation and communication

within the call as that would allow the execution of an entire

allreduce operation within a kernel. This is important for the

current GH200 and will become even more performance-critical

for the GB200 GPUs as over 500 GPUs can be connected via

NVLink. Moreover, this is not limited to systems with NVIDIA

NVLink, as there are many intra-node interconnects this could

apply to such as AMD’s Infinity FabricTM [31], or Cerio’s

Multi-row scale PCIe networks [32]. An alternative would be

to introduce something like collective specific device calls to

separate the initialization and execution of a collective, e.g.

MPIX_Device MPI_Pallreduce. Either of these options

should be strongly considered to reduce the performance

differential between MPI and NCCL to ensure that MPI stays

relevant for decades to come.

C. Overheads

Communication costs are incredibly important to the viability

of GPU-Initiated MPI Partitioned. Table I summarizes overheads

associated with those parts of MPI Partitioned that we have not

yet covered. We place timer around the API calls listed in the

table, and ran the control flow for MPI Partitioned Point-to-Point

and Collectives for 100 iterations. Average values of 10 samples

with standard deviations are reported in Table I. The API calls

fall into three categories: non-blocking initialization, blocking

initialization, and synchronization.
Non-blocking initialization includes MPI_Psend_init,

MPI_Precv_init, and MPIX_Pallreduce_init. The

overheads of these calls are mostly hidden as any required pro-

gression is deferred until the first time MPIX_Pbuf_prepare

is called. MPI_PSend/Recv_init has a cost of 17.2µs
and MPIX_Pallreduce_init has a cost of 62.3µs. The

collective initialization has a higher cost than the Point-to-

Point initialization because collective initialization requires

multiple Point-to-Point initializations as well as creating the

communication schedule.
MPIX_Prequest_create is a blocking initialization call

that moves the relevant data structures to the device. This

TABLE I: Overheads for Different MPI Calls

MPI Call Overhead
MPI_PSend/Recv_init 17.2± 10.2µs

MPIX_Pallreduce_init 62.3± 6.2µs

MPIX_Prequest_create 110.7± 37.8µs

MPIX_Pbuf_prepare 193.4µs first, 3.4± 1.4µs avg.
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is required to be blocking to ensure that when the first

MPIX_Pready is called its corresponding MPIX_Prequest

is valid. This call has an overhead of 110.7µs which is mostly

memory registration of flags and a memory copy from host to

device.
The prior calls are only called once during an application’s

life. The call MPIX_Pbuf_prepare differs in that it is used

to synchronize processes to guarantee remote buffer readiness

and is called multiple times during an application’s life cycle.

The first call will incur a significantly higher overhead than

subsequent calls, therefore, two values are given in Table I.

The initial call has an overhead of 193.4µs, which includes

the overheads of initializing the MCA module and any prior

requests. The cost of subsequent calls is 3.4µs, averaged over

100 iterations. This is important to consider as after the initial

call only synchronization is performed.

D. Application-Kernel Results

In this section we evaluate two application-kernels, a Jacobi

solver and our DL Kernel. The Jacobi solver, evaluates our Point-

to-Point design within the context of an application-kernel, and

the DL Kernel is designed to benchmark allreduce performance.

The data presented in this section differs from prior evaluations

as measurements now include the initialization overheads as well

as communication, rather than assessing them independently.
1) Jacobi Solver: For this evaluation, we modified the MPI +

CUDA example from NVIDIA [33] to use MPI Partitioned Com-

munication. In this implementation, the problem is decomposed

across multiple GPUs, and processes on different GPUs engage

in a Point-to-Point halo exchange communication pattern while

calculating a solution. The problem size must be a multiple of

the number of GPUs that are used. For example, on four GPUs

it must be a multiple 2x2 and on eight it is a multiple of 4x2.

For these experiments, the multiplier is varied from 1 to 32 in

powers of 2.
Results for one and two nodes are shown In Figures 8 and 9,

respectively. The best performance improvement (in terms of
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GFLOP/s) on a single node is modest at 1.06x but for our

two-node test, we obtain a maximum speedup of 1.30x. MPI

Partitioned is also most impactful for smaller kernel sizes and

the performance eventually plateaus. Both of these observations

are consistent with what we saw in Section VI-A2, where we

see better performance for multi-node results as well as for

smaller kernels.
2) Data Parallelism Deep Learning Kernel: In this section,

we evaluate a common kernel and communication pattern used

in DL. Gradient descent is an optimization algorithm frequently

used in deep learning to minimize a cost function. Roughly

speaking, in data parallel training, each GPU receives a copy of

the model, and trains on a different subset of the total training

data. Periodically, the parameters of the copies are synchronized

by exchanging gradients using an allreduce operation.
For these tests, we evaluate a CUDA-based Binary Cross-

Entropy kernel from [34] in conjunction with a traditional

MPI_Allreduce operation, a partitioned allreduce, and a

ncclAllreduce. For the partitioned allreduce, the cost of

MPI_Start and MPIX_Pbuf_prepare are included in

our measurement as this would be present in a training loop.

The results are shown in Figure 10 and Figure 11. There

is a significant improvement over MPI_Allreduce when

compared to the Partitioned Collective. However, NCCL still

outperforms due to the same reasons as stated in Section VI-B,

as the application-kernel is heavily dependent on the collective

operation.

VII. RELATED WORK

A. MPI Partitioned

MPI Point-to-Point communication was initially introduced

in [11], [12], [35] before being adopted into the MPI 4.0

standard. Temuçin et al. [16] developed a set of MPI Partitioned

benchmarks for MPI developers that includes halo exchange

patterns. Gillis et al. [36] and Schonbein et al. [37] each provide

models for investigating the potential benefits of using MPI

Partitioned, allowing for variation in buffer size, number of

partitions, etc. The model given in [37] was used by Temuçin et

al. [10] to dynamically optimize MPI Partitioned via aggregation.
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In addition, [10] presented the first optimization of MPI

Partitioned for specific hardware using InfiniBand Verbs. Dosanjh

et al. [14] compare a an implementation of MPI Partitioned

using MPI persistent send/receive to one using RMA. They

found that an RMA implementation provides some additional

performance benefits compared to the persistent implementation.

MPI Advance [38] includes a Partitioned Communication library

built on persistent communications as part of its collection of

optimizing libraries on top of MPI. To our knowledge there is

only a single peer reviewed paper on MPI Partitioned Collectives

[23]. In that work they proposed the semantics on which MPI

Partitioned Collectives should follow.

B. Accelerator-Aware Partitioned Communication

The previously cited works focus on MPI Partitioned using

CPU buffers. To our knowledge, the single published work on

MPI Partitioned on accelerators (FPGAs) is Christgau et al.

[39]. In that work, the authors developed an MPI Partitioned

library for FPGAs, observing that there are many limitations on

obtaining good performance with current FPGA hardware when

compared to MPI Send/Recv. The MPI Accelerator Extensions

Prototype by NVIDIA [19] provides a proposed interface for

GPU-initiated Partitioned communication, but does not provide

any optimizations. The lack of work on accelerators underscores

the need for research on MPI Partitioned in this area as most of

the world’s top supercomputers use GPUs.

C. GPU-Initiated Communication

The concept of GPU-Initiated communication has been around

for a long time. Stuart et al. [40] proposed an MPI-like library

where communication could be initiated from the GPU using

a CPU helper thread to orchestrate the data transfer. Miyoshi

et al. [41] proposed making MPI calls directly within GPU

kernels. Their method did not require an additional helper thread

but rather that the kernel would be paused, communication

would occur using the host, then the GPU kernel would resume

execution. This implementation requires GPU kernels to be

completely synchronous with respect to the host which has

obvious disadvantages. They found that their proposal improved

GPU programmability with MPI codes but their performance

did not scale. Oden et al. [42] implemented InfiniBand verbs

on GPUs. This work differed from earlier work insofar as

the GPU can control communication by directly accessing the

NIC. However, the host is still involved for initialization of

the NIC since many system calls are made during that phase.

Network resources such as the doorbell register or queue pairs

(QPs)s are mapped to the GPU address space to provide direct

access to the device. Despite this novel approach, using a

host-assisted method performed significantly better for small

messages, and performance gains for large messages were

fairly small. It was noted that these performance issues were

largely due to GPUs being poor with control, the need to

minimize PCIe transfers to the NIC, and that NIC hardware

needs to be improved. Agostini et al. [43], compared initiating

communication on kernel boundaries and within a kernel. They

found that controlling communication from inside a kernel

provided the lowest ping-pong latency. Initiating communication

on the stream outperformed a synchronous model but not as

good as the intra-kernel method. For a 2D halo exchange, kernel

initiated communication worked better for smaller messages but

stream initiated communication outperforms for larger messages.

NVSHMEM [44] also provides InfiniBand GPU Direct Async

transport. Practically speaking, allowing GPUs to directly control

network hardware is still not sufficiently mature. Although it

could be implemented on InfiniBand hardware using Direct

Verbs and DevX, there is not high-level support for MPI as there

is with CPU initiated communication with libraries such as OFI

and UCX. This is something that needs to be addressed with

the multiple network and GPU vendors.

D. GPU-Initiated MPI

Bridges et al. [18] provide an in-depth summary of past and

present proposals for better GPU support for MPI. Venkatesh et

al. [45], extended the MPI_Send/Recv interface to include a

stream parameter where a CUDA stream could be placed. Zhou et

al. [46] propose similar MPI extensions for making calls stream-

aware. In addition to previously MPI_Send/Recv calls work-

ing on their streams, they propose adding an MPIX_Stream

object so that this interface can be accelerator agnostic. They

also propose MPI_Wait calls that wait for on those streams to

synchronize. Alongside those proposals, they also suggest having

a stream communicator so that streams can be addressed between

different processes. HPE Cassini NICs have the capability to

store communication operations in hardware that can then be

triggered at a later time. Namashivayam et al. [47], [48] leverage

these capabilities to allow GPU streams to trigger MPI Send

or MPI Put operations. Our work differs from the other MPI

Proposals as we are focused on MPI Partitioned.

VIII. CONCLUSIONS

As the prevalence of GPU systems grows in the TOP500,

efficient GPU support for MPI becomes critical to maintain

performance for HPC and AI applications. Device bindings

for MPI Partitioned potentially allow MPI to keep up with

specialized libraries such as RCCL or NCCL.
In this paper, we presented the first detailed work on GPU-

Initiated MPI Point-to-Point Partitioned Communication. We

used UCX to provide GPU-to-GPU intra-node Kernel Copy

communication without host control and compare its performance

to issuing copies using the MPI Progression Engine. Aggregation

of user partitions are explored using counters. We extend our

Point-to-Point library implementation to present the first results

on GPU Partitioned Collectives. Our Partitioned Collective

uses a generic scheduling algorithm designed to be algorithm-

independent. The designs are evaluated using micro-benchmarks

for Point-to-Point and collective, then finally for a Jacobi solver

and a Data Parallel Deep Learning Proxy application. Our design

is compared against the state-of-the-art NCCL communication

library and brings MPI performance much closer to the load-store

vendor communication solutions in terms of performance.
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