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Abstract. Recent studies have shown that processes in real applica-
tions can arrive at the collective calls at different times. This imbalanced
process arrival pattern can significantly affect the performance of the
collective operations. MPI Alltoall() is a communication-intensive col-
lective operation that is used in many parallel scientific applications.
Its efficient implementation under different process arrival patterns is
critical to the performance of applications that use them frequently. In
this paper, we propose novel RDMA-based process arrival pattern aware
MPI Alltoall() algorithms over InfiniBand clusters. We extend the algo-
rithms to be shared memory aware for small to medium size messages.
The micro-benchmark and application results indicate that the proposed
algorithms outperform the native implementation as well as their non-
process arrival pattern aware counterparts when processes arrive at dif-
ferent times.
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1 Introduction

Most scientific applications are developed on top of the Message Passing Inter-
face (MPI) [1]. Such applications extensively use MPI collective communication
operations. Most research on developing and implementing efficient collective
communication algorithms assume all MPI processes involved in the operation
arrive at the same time at the collective call. However, it has been recently
shown that process arrival patterns (PAP) for collectives are adequately imbal-
anced that will adversely affect the performance of collective communications
[2]. In addition, it has been found that different collective communication al-
gorithms react differently to PAP [2]. In this regard, the authors in [3] have
recently proposed PAP aware MPI Bcast() algorithms and implemented them
using MPI point-to-point primitives.

InfiniBand [4] has been introduced to support the ever-increasing demand
for efficient communication, scalability, and higher performance in clusters. It
supports Remote Direct Memory Access (RDMA) operations that allow a process
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to directly access the exposed memory areas of a remote process. RDMA is a
one-sided read, write, or atomic operation, offloaded to the network interface
card. MPI implementations over RDMA-enabled networks such as InfiniBand
are able to effectively bypass the operating system overhead and lower the CPU
utilization.

In this paper, we take on the challenge to design and efficiently implement
PAP aware MPI Alltoall() collective on top of InfiniBand. In MPI Alltoall(),
each process has a distinct message for every other process. It is a communication-
intensive operation that is typically used in linear algebra operations, matrix
multiplication, matrix transpose, and multi-dimensional FFT. Therefore, it is
very important to optimize its performance on emerging multi-core clusters in
the presence of different process arrival patterns. Our research is along the work
in [3], however it has a number of significant differences. First, the authors in [3]
have incorporated control messages in their algorithms at the MPI layer to make
the processes aware of and adapt to the PAP. These control messages incur high
overhead, especially for short messages. Our proposed PAP aware MPI Alltoall()
algorithms instead is RDMA-based, and we use its inherent mechanism for no-
tification purposes. Therefore, there are no control messages involved and thus
there is no overhead. Secondly, while [3] is targeted at large messages, we propose
and evaluate two RDMA-based schemes for small and large message. Thirdly,
we propose an intra-node PAP and shared memory aware scatter operation to
boost the performance for small messages.

Our performance results indicate that the proposed PAP aware MPI Alltoall()
algorithms perform better than the native MVAPICH [5] and the non-PAP aware
algorithms when processes arrive at different times. Our RDMA-based PAP and
shared memory aware algorithm is the best algorithm up to 256B messages and
gains up to 3.5 times improvement over MVAPICH. The proposed RDMA-based
PAP aware algorithm is the algorithm of choice for 512B to 1MB messages; it
outperforms the native MVAPICH by a factor of 3.1 for 8KB messages.

The rest of the paper is organized as follows. In Section 2, we provide an
overview of InfiniBand and ConnectX adapter from Mellanox Technologies [6], as
well as the implementation of MPI Alltoall() in MVAPICH. Section 3 discusses
the motivation behind this work by presenting the performance of MPI Alltoall()
in MVAPICH when processes arrive at the collective at random times. Section 4
presents our proposed PAP and shared memory aware MPI Alltoall() algorithms.
In Sect. 5, the performance of the proposed algorithms on a four-node multi-core
cluster is presented. Related work is discussed in Sect. 6. Section 7 concludes the
paper.

2 Background

InfiniBand [4] is an I/O interconnection technology consisting of end nodes and
switches managed by a central subnet-manager. End nodes use Host Channel
Adapters (HCA) to connect to the network. InfiniBand verbs form the lowest
level of software to access the InfiniBand protocol-processing engine offloaded to
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the HCA. The verbs layer has queue-pair based semantics, in which processes
post send or receive work requests to send or receive queues, respectively. In-
finiBand supports both the channel semantics (send-receive) and the memory
semantics (using one-sided RDMA operations). RDMA-based communication
requires the source and destination buffers to be registered to avoid swapping
memory buffers before the DMA engine can access them.

ConnectX [6] is the most recent generation of InfiniBand HCAs by Mel-
lanox Technologies. Its architecture includes a stateless offload engine for proto-
col processing that improves the performance by having hardware schedule the
packet processing directly. This technique allows the ConnectX to have a better
performance for processing simultaneous network transactions, as used in our
algorithms.

In MVAPICH [5], point-to-point and some MPI collective communications
have been implemented directly using RDMA operations. However, MPI Alltoall()
uses the two-sided MPI send and receive primitives, which transparently uses
RDMA. Different algorithms are employed in MPI Alltoall() for different mes-
sage sizes: the Bruck [7] algorithm for small messages, the Recursive-Doubling
[8] algorithm for large messages and power of two number of processes, and the
Direct algorithm for large messages and non-power of two number of processes.

3 Motivation

To show how the native MVAPICH MPI Alltoall() perform on our platform
under random PAP, we use a micro-benchmark similar to [3]. Processes first
synchronize using an MPI Barrier(). Then, they execute a random computation
before entering the MPI Alltoall(). The random computation time is bounded
by a maximum value MIF (maximum imbalanced factor [3]) times the time it
takes to send a message.

The experiment was conducted on a 4-node, 16-core ConnectX cluster, de-
scribed in Sect. 5. To get the performance of MPI Alltoall(), a high-resolution
timer is inserted before and after the MPI Alltoall() operation. The completion
time is reported as the average execution time across all the processes. Figure
1 presents the performance of MVAPICH MPI Alltoall() when MIF is 1, 32,
128 and 512, respectively. Clearly, the completion time is greatly affected by the
increasing amount of random computation. The results confirm the findings in
[2] that PAP can have significant impact on the performance of collectives. It
is therefore crucial to design and implement PAP aware collectives to improve
their performance and consequently the performance of the applications that use
them frequently.

4 The Proposed Process Arrival Pattern Aware
MPI Alltoall()

In this section, we propose our PAP and shared memory aware algorithms for
MPI Alltoall(). The basic idea in our algorithms is to let the early-arrival pro-
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Fig. 1. Performance of MVAPICH MPI Alltoall() for different process arrival patterns

cesses do as much work as possible. One critical issue in our PAP aware algo-
rithms is how to let every other process know who has already arrived at the call.
Previous work on PAP aware MPI Bcast() [3] has introduced control messages
that would add extra overhead, especially for small messages. However, in our
work we do not send distinct control messages and instead we utilize the inherent
features of RDMA-based communication to notify the arrival of a process.

4.1 Notification Mechanisms for Early-Arrival Processes

The basic idea in our PAP aware MPI Alltoall() is for each process to send its
distinct data to the already-arrived processes as soon as possible. It is there-
fore very important to have an efficient mechanism in place to inform others of
the early-arrival processes. For this, we have devised two different notification
mechanisms for zero-copy and copy-based schemes used in RDMA-based com-
munications. These notification mechanisms do not incur any communication
overhead.

In the zero-copy approach, where the cost of data copy is prohibitive for
large messages, the application buffers are registered to be directly used for data
transfer. However, for an RDMA Write message transfer to take place each source
process needs to know the address of the remote destination buffers. For this,
each process will advertise its registered destination buffer addresses to all other
processes by writing into their pre-registered and pre-advertised control buffers.
This inherent destination address advertisement mechanism can be interpreted
as a control message to indicate a process has arrived at the MPI Alltoall() call.
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Therefore, processes can poll their control buffers to understand which other
process has already arrived at the collective call.

To avoid the high cost of application buffer registration for small messages,
the copy-based technique involves a data copy to pre-registered and pre-advertised
intermediate data buffers at both send and receive sides. The sending process
can copy its messages to the pre-registered intermediate destination buffers us-
ing RDMA Write. Therefore, the received data in the pre-registered intermediate
destination buffer can be used as a signal that the sending process has already
arrived at the site. This can be checked out easily by polling the intermediate
destination buffer.

4.2 RDMA-based Process Arrival Pattern Aware Direct Algorithm

Our base algorithm is the Direct alltoall algorithm. Let N be the total number of
processes involved in the operation. In this algorithm, at step i, process p sends
its message to process (p + i) mod N, and receives a message from process (p
- i) mod N. To implement this algorithm, each process p first posts its RDMA
Writes to all other processes in sequence (after it receives the destination buffer
addresses). It then polls the completion queues to make sure its messages have
been sent to all other processes. Finally, it waits to receive the incoming messages
from all processes.

To make this algorithm PAP aware using zero-copy scheme, each process p
polls its control buffers for the advertised remote destination buffer addresses
starting from process (p + i) mod N. It then sends its distinct data to the final
destination buffers of the early-arrived processes using RDMA Write. Subse-
quently, it waits for the remaining processes to arrive in order to send its mes-
sages to them. Finally, each process waits for all incoming messages by polling
its own destination buffers. The beauty of this PAP aware algorithm over the
non-PAP aware algorithm is that a sending process will never get stuck for a
particular process to arrive in order to proceed with the next message transfer.

Under the copy-based scheme, each process p polls its intermediate destina-
tion buffers, starting from process (p - i) mod N. Any received data indicates
that the corresponding process has already arrived. The process p then copies
its messages using RDMA Write to all early-arrived processes. It then sends its
data to the rest of processes who have not yet arrived. All processes also need to
wait to receive messages from all other processes into their intermediate buffers,
and then copy them to their final destination buffers.

4.3 RDMA-based Process Arrival Pattern and Shared Memory
Aware Direct Algorithm

Up to this point, we have utilized the RDMA features of InfiniBand along with
the PAP awareness in an effort to improve the performance of MPI Alltoall().
Previous research has shown that shared memory intra-node communication can
improve the performance of collectives for small to medium size messages [9, 15,
16]. It is interesting to see how this might affect the performance under different
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PAP. For this, we propose a shared memory and RDMA-based PAP aware Direct
algorithm for MPI Alltoall() that has the following three phases:

Phase 1: Intra-node shared memory gather performed by a master process
Phase 2: Inter-node process PAP aware Direct alltoall among the masters
Phase 3: Intra-node PAP and shared memory aware scatter by a master
A master process is selected for each node (without loss of generality, the first

process in each node). Phase 1 cannot be PAP aware because the master process
has to wait for all intra-node messages to arrive into a shared buffer before
moving on to the PAP aware Phase 2. Phase 2 is the same as the algorithm
proposed in Section 4.2, and is performed among the master processes. In Phase
3, an intra-node shared memory and PAP aware scatter is devised. Because the
master processes may arrive in Phase 2 at different times, this awareness can be
passed on to Phase 3 by allowing the intra-node processes to copy their destined
data available in the shared buffer to their final destinations without having to
wait for data from all other masters.

In a shared memory but non-PAP aware Phase 3, a master process waits to
receive the data from all other master processes. It then copies them all to a
shared buffer and sets a shared done flag. All other intra-node processes poll on
this flag, and once set they start copying their own data from the shared buffer
to their final destinations.

In the shared memory and PAP aware Phase 3, we consider multiple shared
done flags, one for the data from each master process (four flags in our 4-node
cluster). As soon as a master process receives data from any other master process,
it copies it to the shared buffer and then sets the corresponding done flag. All
other intra-node processes poll on all done flags, and as soon as any partial data
is found in the shared buffer they copy them to their final destination buffers.

5 Experimental Results

The experiments were conducted on a 4-node dedicated multi-core cluster, where
each node is a Dell PowerEdge 2850 server having two dual-core 2.8GHz In-
tel Xeon EM64T processors (2MB of L2 cache per core) and 4GB of DDR-2
SDRAM. Each node has a two-port Mellanox ConnectX InfiniBand HCA in-
stalled on an x8 PCI-Express slot. Our experiments were done under only one
port of the ConnectX HCA operating in InfiniBand mode. The machines are
interconnected through a Mellanox 24-port MT47396 Infiniscale-III switch. In
terms of software, we used the OpenFabrics Enterprise Distribution, OFED-
1.2.5 [9], installed over Linux Fedora Core 5, kernel 2.6.20. For MPI, we used
MVAPICH-1.0.0-1625.

5.1 Micro-benchmark Results

In this section, we present the performance results of the proposed algorithms,
the RDMA-based PAPaware Direct (PAP Direct), and RDMA-based PAP and
Shared-memory aware Direct (PAP Shm Direct), and compare them with the
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non-PAP aware RDMA-based Direct (Direct) and RDMA-based and Shared-
memory aware Direct (Shm Direct) algorithms as well as with the native MVA-
PICH on our cluster.

We have evaluated the proposed algorithms using both copy-based and zero-
copy techniques for 1B to 1MB messages. The results shown in this section are
the best results of the two schemes for each algorithm. We use cycle-accurate
timer to record the time spent in an MPI Alltoall() (1000 iterations) for each
process, and then calculate the average time across all processes.
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Fig. 2. Performance of MPI Alltoall() running with 16 processes

Figure 2 compares our PAP aware algorithms with the native MVAPICH
implementation and non-PAP aware versions, with MIF equal to 32 and 512.
Clearly, the PAP aware algorithms, PAP Direct and PAP Shm Direct, are bet-
ter than their non-PAP aware counterparts for all message sizes. This shows that
indeed such algorithms can adapt themselves well with different PAP. Our algo-



8 Process Arrival Pattern and Shared Memory Aware Alltoall on InfiniBand

rithms are also superior to the native MVAPICH, with an improvement factor of
3.1 at 8KB for PAP Direct and 3.5 at 4B for PAP Shm Direct, with MIF equal
to 32. With a larger MIF of 512, the improvements are 1.5 and 1.2, respectively.

Comparing the PAP Shm Direct with PAP Direct, one can see that the
PAP Shm Direct is the algorithm of choice up to 256 bytes for MIF equal to
32. However, this is not the case for MIF of 512 where processes may arrive
at the call with more delay with respect to each other. This shows that the
shared memory version of our algorithm introduces some sort of implicit syn-
chronization in Phase 1 that may degrade its performance under large maximum
imbalanced factors.

To evaluate the scalability, we compare the performance of the PAP Direct
MPI Alltoall() with those of MVAPICH and Direct for 4, 8, and 16 processes,
as shown in Fig. 3 (shared memory algorithms are not shown due to limited
data points). One can see that the proposed PAP aware algorithm has scalable
performance and is always superior to the non-PAP aware algorithms. We have
found similar results for other MIFs and messages sizes.
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Fig. 3. MPI Alltoall() scalability

In the previous micro-benchmark, the arrival time of each process is random.
In another micro-benchmark, similar to [3], we control the number of late pro-
cesses. In Figure 4, we present the results for MIF equal to 128 when 25% or
75% of processes arrive late. Our proposed algorithms are always better than
their counterparts for the 25% case, and mostly better in the 75% case. The
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PAP Shm Direct is always better than MVAPICH, although with a less margin
in the 75% case.
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Fig. 4. Performance of MPI Alltoall() with 25% and 75% late processes, 16 processes

5.2 Application Results

In this section, we consider the FT application benchmark from NAS 2.4 [11] to
evaluate the performance and scalability of the proposed PAP aware MPI Alltoall().
FT uses MPI Allltoall() as well as a few other collectives. We have experimented
with class B and C of FT, running with different number of processes, which use
payloads larger than 2MB. Table 1 shows the PAP aware MPI Alltoall() speedup
over the native MVAPICH and the Direct algorithms for FT running with 4, 8,
and 16 processes. Clearly, the proposed algorithm outperforms the conventional
algorithms. The results also show that the PAP aware MPI Alltoall() has modest
scalability as speedup improves with increasing number of processes.
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Table 1. PAP Direct MPI Alltoall() speedup over native MVAPICH and the Direct
algorithms for NAS FT running with different number of processes and classes

Speedup over native MVAPICH Speedup over Direct algorithm

FT (Class B) FT (Class C) FT (Class B) FT (Class C)

4 processes 1.08 1.01 1.16 1.04

8 processes 1.10 1.04 1.04 1.14

16 processes 1.14 1.17 1.42 1.63

6 Related Work

Study of collective communications has been an active area of research. Thakur
and his colleagues [8] discussed recent collective algorithms used in MPICH [12].
They have shown some algorithms perform better depending on the message size
and the number of processes involved in the operation.

Faraj and his associates [2] discussed the PAP in a set of MPI programs,
which denotes the timing when different processes arrive at an MPI collective
operation. They discovered that the time difference between the arrivals of each
process at a collective call is usually large enough to affect the performance of the
collective. An MPI broadcast across different PAP was proposed by Patarasul
and Yuan [3], in which they inserted control messages in their algorithms to make
the processes aware of and adapt to the PAP. Their algorithms were implemented
at the MPI layer using MPI point-to-point operations.

Sur and others [13] proposed RDMA-based MPI Alltoall() algorithms for
InfiniBand clusters. Buntinas et al. [14] used different mechanisms to improve
large data transfers in SMP systems. Tipparaju and others overlapped the shared
memory and remote memory access communications in devising collectives [15].
Qian and Afsahi proposed efficient RDMA-based and shared memory aware all-
gather at the Elan-level over multi-rail QsNetII clusters [9], and on InfiniBand
ConnectX using its multi-connection capabilities [16].

7 Conclusions and Future Work

MPI Alltoall() is one of the most communication-intensive primitives in MPI.
Imbalanced PAP has an adverse impact on its performance. In this paper, we pro-
posed RDMA-based and shared memory PAP aware MPI Alltoall() algorithms
without introducing any extra control messages.

The performance results indicate that the proposed algorithms perform bet-
ter than their non-process arrival pattern counterparts when processes arrive at
different times. They also outperform the native MVAPICH implementation by
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a large margin, up to 3.1 times at 8KB for PAP Direct and 3.5 times at 4B for
PAP Shm Direct.

While this study was focused at MPI Alltoall(), it can be directly extended
to other collectives. The proposed techniques can be applied to other alltoall
algorithms such as Bruck or recursive doubling. However, one has to bear in mind
that due to synchronization between different steps of these algorithms they may
not achieve the highest performance as in the Direct algorithm. We are currently
investigating this. We also intend to experiment with a larger testbed and study
other collectives to understand the true potential of PAP aware algorithms.

Acknowledgments. This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada Grant #RGPIN/238964-2005, and
Canada Foundation for Innovation and Ontario Innovation Trust Grant #7154.
We would like to thank Mellanox Technologies for the resources.

References

1. MPI: A Message Passing Interface standard (1997)

2. Faraj, A., Patarasuk, P., Yuan, X.: A Study of Process Arrival Patterns for MPI
Collective Operations. International Journal of Parallel Programming, 36(6), 543–
570 (2008)

3. Patarasuk, P., Yuan, X.: Efficient MPI Bcast across Different Process Arrival
Patterns. In: 22nd International Parallel and Distributed Processing Symposium
(IPDPS) (2008)

4. InfiniBand Architecture, http://www.infinibandta.org

5. MVAPICH, http://mvapich.cse.ohio-state.edu

6. Mellanox Technologies, http://www.mellanox.com

7. Bruck, J., Ho, C.-T., Kipnis, S., Upfal, E., Weathersby, D.: Efficient Algorithms for
All-to-all Communications in Multiport Message-passing Systems. IEEE Transac-
tions on Parallel and Distributed Systems, 8(11), 1143-1156 (1997)

8. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of Collective Communica-
tion Operations in MPICH. International Journal of High Performance Computing
Applications, 19(1), 49–66 (2005)

9. Qian, Y., Afsahi, A.: Efficient Shared Memory and RDMA based Collectives on
Multi-rail QsNetII SMP Clusters. Cluster Computing, Journal of Networks, Soft-
ware Tools and Applications, 11(4), 341–354 (2008)

10. OpenFabrics Alliance Homepage, http://www.openfabrics.org

11. NAS Benchmarks, version 2.4, http://www.nas.nasa.gov/Resources/Software/
npb.html

12. MPICH, http://www.mcs.anl.gov/research/projects/mpich2

13. Sur, S., Jin, H.-W., Panda, D.K.: Efficient and Scalable All-to-all Personalized
Exchange for InfiniBand Clusters. In: 33rd International Conference on Parallel
Processing (ICCP), pp. 275–282 (2004)

14. Buntinas, D., Mercier, G., Gropp, W.: Data Transfers Between Processes in an
SMP System: Performance Study and Application to MPI. In: 35th International
Conference on Parallel Processing (ICPP), pp. 487–496 (2006)



12 Process Arrival Pattern and Shared Memory Aware Alltoall on InfiniBand

15. Tipparaju, V., Nieplocha, J., Panda, D.K.: Fast Collective Operations using Shared
and Remote Memory Access Protocols on Clusters. In: 17th International Parallel
and Distributed Processing Symposium (IPDPS), (2003)

16. Qian, Y., Rashti, M.J., Afsahi, A.: Multi-connection and Multi-core Aware All-
Gather on InfiniBand Clusters. In: 20th IASTED International Conference on Par-
allel and Distributed Computing and Systems (PDCS), pp. 245–251 (2008)


