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Abstract To avoid the memory registration cost for small
messages in MPI implementations over RDMA-enabled net-
works, message transfer protocols involve a copy to inter-
mediate buffers at both sender and receiver. In this paper, we
propose to eliminate the send-side copy when an application
buffer is reused frequently. We show that it is more efficient
to register the application buffer and use it for data transfer.
The idea is examined for small message transfer protocols
in MVAPICH2, including RDMA Write and Send/Receive
based communications, one-sided communications and col-
lectives. The proposed protocol adaptively falls back to the
current protocol when the application does not frequently
use its buffers. The performance results over InfiniBand in-
dicate up to 14% improvement for single message latency,
close to 20% improvement for one-sided operations and up
to 25% improvement for collectives. In addition, the com-
munication time in MPI applications with high buffer reuse
is improved using this technique.

Keywords MPI · Buffer reuse · RDMA · Eager protocol ·
Buffer copy · Memory registration

1 Introduction

Message Passing Interface (MPI) [1] is the de-facto com-
munication library in high-performance computing clusters.
Most commercial and open source MPI implementations
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utilize the latest advancements in interconnection technol-
ogy to improve communication performance. Remote Direct
Memory Access (RDMA) [2] is one of the important fea-
tures of modern interconnects that substantially improves
the communication performance in clusters. MPI imple-
mentations over contemporary networks such as InfiniBand
(IB) [3] take advantage of benefits that RDMA brings to
inter-node communication, such as operating system bypass,
lower CPU utilization, and zero-copy data transfer.

RDMA-based communication requires the source and
destination buffers to be registered to avoid swapping mem-
ory buffers before the DMA engine can access them [4].
Memory registration is an expensive process that involves
buffer pin-down and virtual-physical address translation
[4, 5]. In addition, the registration tag needs to be adver-
tised to the remote node. These costs urge the MPI devel-
opers to treat small and large messages differently, in or-
der to avoid extra communication overheads. For small user
buffers, where the cost of buffer registration is prohibitive,
the user data are copied from application buffers into pre-
registered and pre-advertised intermediate buffers. These
buffers are internal to MPI implementation and are used for
direct memory access at both send and receive sides. On the
other hand, for large buffers, where the overhead of mem-
ory copy exceeds memory registration cost, the actual user
buffers are registered for RDMA transfer.

In MPICH2-based implementations [6], an Eager proto-
col is used for point-to-point communication of small mes-
sages to avoid extra overhead of pre-negotiation. The MPI
Eager protocol does not use an acknowledgment at the MPI
level to notify the completion of the data transfer. The MPI
send operation finalizes the communication as soon as the
data is reliably transferred to the other side by the IB net-
work. The receiver polls on the MPI intermediate receive
buffers for the message arrival.
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For large messages, a Rendezvous protocol [7] is used
in which a negotiation phase makes the receiver ready to
receive the message data from the sender directly into the
receiver application buffer. After the data transfer, a final-
ization message is sent by the sender to inform the receiver
that the data is placed in its appropriate application buffer.

Similar mechanisms are used for MPI-2 one-sided op-
erations (MPI_Get and MPI_Put), where a synchronization
operation is required to finalize the communication. In both
Put and Get operations, small messages are copied into in-
termediate pre-registered buffers, while the large application
buffers are registered and used directly for RDMA transfer.
For MPI_Put, once a message is transferred using RDMA
Write, a flag is set at the remote node (using RDMA Write)
to indicate that the data transfer is complete. In MPI_Get,
the data is transferred using RDMA Read into a local buffer,
and then a Finalize packet is sent to finalize the communi-
cation. In an active target communication scenario [1], an
explicit synchronization is performed among processes us-
ing RDMA Write operations, after all one-sided operations
are posted.

In the current MPICH/MVAPICH implementations, the
aforementioned protocols for small messages are optimized
based on a single usage of application buffers. In contrast,
the reality is that most of the user buffers in MPI applications
are frequently used during the course of execution. This fea-
ture, the buffer reuse in MPI applications, has been the main
motivation behind this work.

To reduce the communication latency for small mes-
sages, we propose to register the frequently-used applica-
tion buffers so that we could initiate RDMA operations di-
rectly from the application buffers rather than the intermedi-
ate buffers. Obviously, infrequently-used buffers are treated
as before, until they are marked as frequently-used. This
way, the cost of communication is decreased by skipping
a data copy. The registered user buffer can be kept in MPI
registration cache and be retrieved in subsequent references
to the same buffer. Therefore, the cost of one-time regis-
tration is amortized over the cost of multiple data copies.
Note that the receiver-side data copies for two-sided com-
munications are still required, because we are carrying out
an Eager transfer, which assumes no negotiation with the re-
ceiver process. For one-sided operations though, only one
data copy exists which is avoided by the proposed method,
a data copy at the sender-side for MPI_Put, and a data copy
at the receiver-side for MPI_Get.

This paper contributes by extending the proposed pro-
tocol in [8] for Eager communication on RDMA fast-path
(using InfiniBand [3] verbs layer RDMA Write operation) to
two other communication paths in MPI implementation: Ea-
ger protocol on verbs layer Send/Receive operations (non-
fast-path), and small message one-sided operations (both
MPI Get and Put).

The rest of this paper is organized as follows. In Sect. 2,
we describe the motivation behind this work. Details about
our proposed method for small message transfer will follow
in Sect. 3. We also present an online adaptation mechanism
to minimize the overhead on applications that do not reuse
their buffers frequently. Experimental framework and per-
formance results are presented in Sect. 4 and Sect. 5, respec-
tively. We discuss the related work in Sect. 6, and conclude
the paper in Sect. 7.

2 Motivation

Despite architectural and technological advances in mem-
ory subsystems of modern computing systems, buffer copy
is still a major source of overhead in inter-process commu-
nication. As explained earlier, the current MPI protocols for
short message transfer use memory copies from the applica-
tion buffer into intermediate buffers (or vice-versa), to avoid
the higher cost of memory pinning required for direct mem-
ory access by the network interface card. If the user buffer is
used frequently in an application, it may be beneficial to reg-
ister the user buffer and avoid the memory copy. To find out
whether this method is helpful, we first need to investigate
the buffer reuse pattern of MPI applications at runtime.

Table 1 shows the Eager buffer reuse statistics for some
MPI applications described in Sect. 4.1. The second column
shows the range (and the average) of the maximum number
of times a user buffer is reused among 16 processes. The
third column shows the most frequently-used buffer sizes
among 16 processes for these applications. The last col-
umn shows the buffer reuse percentage among all Eager-size
buffer accesses for each application, averaged over 16 pro-
cesses. Table 1 confirms that indeed application buffers are
reused frequently in most processes of the applications un-
der study.

Table 1 Eager buffer reuse statistics for MPI applications running
with 16 processes

MPI
application

Range of buffer
reuse counts

Range of most
frequently
used buffer
sizes (bytes)

Buffer reuse
percentage

NPB CG
Class C

7904–7904
(Avg: 7904)

8–8 (Avg: 8) 42.94%

NPB LU
Class C

3749–3750
(Avg: 3749)

1560–1640
(Avg: 1600)

98.71%

ASC
AMG2006

45–292
(Avg: 119)

8–3648
(Avg: 770)

76.86%

SPEC
MPI2007
104.MILC

2–5010
(Avg: 2049)

8–4800
(Avg: 2876)

44.26%
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Fig. 1 Small message latency, buffer copy cost and theoretically expected improvement: (a) two-sided operations (Eager), (b) one-sided operations

Now that it appears that there is a potential to revise
the small message transfer protocols for the frequently-used
buffers, we would like to know how much improvement
we can theoretically achieve if we remove one data copy
operation. Figure 1 compares the ping-pong message la-
tency against the cost of one buffer copy for small-size mes-
sages on our InfiniBand cluster using MVAPICH2 (refer to
Sect. 4 for the description of our experimental platform).
Figure 1(a) shows the results for two-sided communications
while Fig. 1(b) considers the case for one-sided operations.

Performance results suggest that up to 20% improvement
can be achieved by bypassing one buffer copy for small mes-
sages. Note that this analysis does not take into account the
one-time cost of registration as well as the implementation
overhead. It should be mentioned that MVAPICH2 switches
from Eager to the Rendezvous protocol at about 9 KB on
our platform. That is why the experimental results in this
paper are shown for up to 8 KB messages. We have not
changed the default Eager/Rendezvous switching point in
our study because it is the optimal value calculated for our
platform. While a higher switching point is expected to pro-
vide a larger improvement for our proposed technique, it
would degrade the baseline communication performance of
the MVAPICH2 implementation.

For one-sided operations, this switching happens at 4 KB
on our platform. However, experiments show that we can
get a better performance by increasing this switching point.
For consistency, we will report the performance results for
one-sided operations up to the 8 KB messages.

3 Frequent-buffer communication

In this section, we describe the details of the proposed small-
message communication mechanism, both for Eager pro-
tocol and one-sided operations. Section 3.1 describes the

general behavior of the proposed Eager method. We show
the extension of this method for one-sided operations in
Sect. 3.2. Section 3.3 presents the details about detecting
frequently-used buffers at runtime. Finally, Sect. 3.4 pro-
poses an adaptation mechanism to minimize the overhead
on applications that do not benefit from the new protocol
due to their low buffer reuse statistics.

3.1 Small message communication mechanism

Figure 2 depicts the general idea behind bypassing the
user buffer copy through application buffer registration. Fig-
ure 2(a) illustrates the two-sided (Eager) protocol. The cur-
rent general path for Eager messages is shown in dashed
arrows, while the new path for frequently-used buffers is in
solid arrows. RDMA represents both RDMA Write (mem-
ory semantics—one-sided) and Send (channel semantics—
two-sided) operations. Essentially, if an application buffer
is used frequently it will be registered so that the user data
can be directly transferred from the application buffer by an
RDMA operation. Therefore, the communication cost is re-
duced by avoiding the data copy into a pre-registered buffer.

However, as noted earlier, we cannot avoid the copy into
the receiver’s intermediate buffer (as shown in Fig. 2(a), for
two-sided protocols) due to the Eager communication se-
mantics. In order for the receiver side to detect reception of
Eager messages, there is a need to transfer the Eager mes-
sage header along with the Eager payload. The Eager header
constitutes a small amount of data (especially when header
caching is enabled [9]) that is still copied into the intermedi-
ate buffers. We use InfiniBand RDMA scatter/gather mecha-
nism in which, the header information from a pre-registered
buffer and the user data from the application buffer are gath-
ered by the NIC in a single message using an RDMA gather
list. The message is then transferred together into the re-
ceiver’s pre-registered intermediate buffer. Therefore, the
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Fig. 2 Data flow diagram for
the current and proposed
protocols: (a) two-sided (Eager)
protocol, (b) one-sided
protocols

cost of copying a buffer containing both the user data and the
header is decreased to the cost of only copying the header
which is included in the calculation of the theoretical im-
provement, as shown in (6) in Sect. 5.1.1.

We keep the registered application buffers in MVAPICH2
registration cache so they could be retrieved in subsequent
references. MVAPICH2 uses a lazy de-registration mecha-
nism to avoid re-registrations in future buffer reuses [10].
In this mechanism, a previously registered buffer remains
registered and its pointer is stored in a binary tree. Instead
of actually registering and deregistering the buffer, its ref-
erence count is increased/decreased each time the buffer is
needed to be registered/deregistered. Only when the regis-
tration cache is full, a buffer with zero reference count will
be evicted from the cache and then deregistered. It is worth
mentioning that to keep the information in the registration
cache coherent with the operating system virtual memory
changes, a synchronization with the operating system kernel
is required that may negatively affect the performance of the
registration cache [11].

3.2 Improving one-sided operations

Figure 2(b) shows the mechanism used for MPI one-sided
operations. MPI_Put is shown on the left hand side and
MPI_Get is on the right hand side of Fig. 2(b). Dashed lines
show the current protocol, while the solid lines represent the
new protocol in which a memory copy is bypassed. Similar
to the Eager protocol for point-to-point communications, if
an application buffer (send buffer or receive buffer) is used
frequently it will be registered for the data transfer in order
to reduce the communication cost by avoiding the data copy
into a pre-registered buffer. In both protocols, after initiating
RDMA (Write or Read) operations, a remote flag is set using

RDMA Write to inform the remote party that the operation
is performed.

3.3 Detection of frequently-used buffers

To be able to detect frequently-used buffers, we need to
keep track of the buffer usage statistics. When a small buffer
is accessed for communication, the buffer is searched in a
data structure containing buffer usage statistics. If the buffer
is found in the table and its usage statistics has surpassed
a pre-calculated threshold, then it is a candidate for buffer
registration. At this step, the algorithm looks for the buffer
in the registration cache (for possible previous registration).
A buffer that is not found in the cache will be registered and
placed in the cache for future reference.

Now the question is that which buffer is considered
frequently-used? In other words, what is the lowest value
of the reuse threshold from which this mechanism can yield
benefit? To realize the answer, we need to calculate the
timing costs associated with both communication paths de-
picted in Fig. 2.

3.3.1 Two-sided communication

The current Eager communication path involves a copy
to/from the pre-registered buffer at sender/receiver plus an
RDMA Write or Send/Receive based transfer between the
two pre-registered buffers. In the proposed technique, we do
not have the first copy, but we have an extra memory regis-
tration at the sender side. If we consider Cm as the copy cost,
NTm as the network transfer time, and Rm as the registration
cost for a single message with size m, and V as the imple-
mentation overhead for the new method, the current and the
new communication times, Tc and Tn, when we reuse the
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Table 2 Minimum required buffer reuse number, n, for different mes-
sage sizes on our platform

Fast-path Non-fast-path One-sided

Message size (bytes):
Minimum n

Message size (bytes):
Minimum n

Message size
(bytes): Minimum n

512 B: 432 512 B: 1568 512 B: 196

1 KB: 200 1 KB: 448 1 KB: 128

2 KB: 110 2 KB: 224 2 KB: 128

3 KB: 76 3 KB: 131 3 KB: 125

4 KB: 60 4 KB: 95 4 KB: 56

5 KB: 48 5 KB: 75 5 KB: 33

6 KB: 40 6 KB: 65 6 KB: 29

7 KB: 36 7 KB: 55 7 KB: 26

8 KB: 32 8 KB: 49 8 KB: 25

buffer n times, will be defined as:

Tc = n × (2 × Cm + NTm), (1)

Tn = n × (Cm + NTm + V ) + Rm (2)

In order to benefit from the new method, we should find
the minimum n such that Tn < Tc:

n >
Rm

Cm − V
(3)

The value V is the overhead incurred in searching both
the table containing buffer usage statistics and the buffer
registration cache. The buffer usage statistics are stored in
a hash table structure (refer to Sect. 3.3.3), and the registra-
tion cache is in a balanced binary tree.

Inequality (3) shows the minimum number of times a
buffer of size m needs to be reused after registration in order
to benefit from the new method. Table 2 shows the minimum
value of n for different message sizes on our platform. The
value, n, is negative for messages smaller than 64 bytes due
to V > Cm. Even with very high number of reuses, there will
be no benefit, and therefore we have disabled the proposed
method for such messages.

Our algorithm dynamically decides when a buffer needs
to be registered. The registration threshold is based on the
pre-calculated values, shown in Table 2. However, we have
devised the algorithm in such a way that it can speculatively
decide to register a buffer when it is reused at least by a
certain portion (e.g. 25%, 50% or 100%) of the minimum
number, n, hoping that the buffer will be reused for more
than that later. As an example for the 25% case (used in our
experiments), a 4 KB buffer is registered when it is reused
15 times, hoping that it will be reused 60 times or more so
that the registration cost is amortized.

Fig. 3 Comparing search time between hash table and binary tree

3.3.2 One-sided communication

MPI one-sided communication follows a different path. For
MPI_Put, a memory copy is followed by an RDMA Write to
the remote buffer exposed by MPI window. Thus, the com-
munication cost for the current and new methods, when a
buffer is reused n times, can be formulated as in (4) and (5),
respectively, in which NWm is the latency of Network Write
(RDMA Write) operation:

Tc = n × (Cm + NWm) (4)

Tn = n × (NWm + V ) + Rm (5)

For Tn < Tc, n follows the same inequality (3). A simi-
lar analysis can be done for MPI_Get, in which the RDMA
Read cost (NRm) is used instead of NWm in (4) and (5), lead-
ing to the same lower bound for n. Table 2 shows the min-
imum value of n for different message sizes for one-sided
communication on our platform.

3.3.3 Searching the buffer usage table

In order to minimize the overhead, V , we have experimented
with two different data structures for buffer usage table: hash
table and balanced binary tree [10]. Our hash table has 1 M
hash buckets, and each buffer address is hashed into a 20-
bit index. In each hash bucket, the buffers with conflicting
hash values are stored in a linked list. For the hashing func-
tion, we have chosen a multiplicative hash method proposed
for Linux buffer cache [12] that is known to be efficient for
hashing buffer addresses.

As shown in Fig. 3, with the growth of the database (the
number of small size buffers in the table), the search time
in the hash table grows very slowly, compared to that of the
binary tree. Based on these results, we have chosen the hash
table for our buffer usage search structure.

3.4 Adaptation

The idea of registering small buffers is useful for applica-
tions with a high buffer reuse profile. For applications with
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low buffer reuse, although we normally do not incur the
buffer registration cost for small messages, the overhead of
manipulating buffer usage statistics can affect the overall
performance of the communication protocol, especially for
small messages with latencies comparable to the overhead.

One approach is to get the static profiles of the applica-
tions and use them to register frequently-used buffers when
the program starts running. However, this approach requires
extra provisioning especially at the compiler stage for appli-
cation profiling, and in addition, it does not work for appli-
cations with dynamic profiles. The approach we have used
in this work is based on the monitoring of application buffer
usage at runtime. We dynamically monitor the overall buffer
usage statistics of the application, and adaptively stop the
growth of the buffer usage table when the overall buffer us-
age statistics is low.

To avoid early stoppage, the adaptation mechanism acts
only when the hash table starts growing linked lists in its
hash buckets. This is because the overhead of hash table
search/insertion increases dramatically when the hash val-
ues for message buffers conflict and need to be added to
the same hash bucket linked list, causing the linked-list to
grow. Obviously, if no conflict has occurred in the hash ta-
ble search, the search time is of order O(1) regardless of
the number of buffers in the hash table. In summary, adding
more buffers to the hash table is stopped when the following
two conditions are satisfied:

(1) When the number of (registered) buffers in the hash ta-
ble that are marked as frequently-used is less than 20%
(a typical value) of all buffers in the table; and

(2) When the hash table has started to grow linked lists (due
to linear search/insertion costs).

4 Experimental framework

We have conducted our experiments on four Dell Pow-
erEdge 2850 servers, each with two dual-core 2.8 GHz In-
tel Xeon EM64T processors (2 MB of L2 cache per core)
and 4 GB of DDR-2 SDRAM. Each node has a Mellanox
ConnectX DDR InfiniBand HCA [13] installed on an x8
PCI-Express slot, interconnected through a Mellanox 24-
port Infiniscale-III switch. In terms of software, we are using
MVAPICH2 1.0.3 [14] over OpenFabrics Enterprise Distri-
bution (OFED) 1.4 [15], installed on Linux Fedora Core 5,
kernel 2.6.20.

4.1 MPI applications

We have considered four applications in evaluating the pro-
posed Eager protocol: CG and LU benchmarks from NPB
2.4 benchmarks [16], AMG2006 from ASC Sequoia suite
[17], and 104.MILC from SPEC-MPI 2007 suite [18].

CG [16] solves an unstructured sparse linear system us-
ing the conjugate gradient method. CG mostly uses MPI
send/receive and barrier operations [19]. LU [16] is a sim-
plified compressible Navier-Stokes equation solver. LU
mostly relies on MPI blocking (and a few non-blocking)
send/receive, and some broadcast, all-reduce and barrier op-
erations [8, 19].

AMG2006 [17] is a parallel algebraic multi-grid solver
for linear systems arising from problems on unstructured
grids. It uses blocking and non-blocking MPI send/receive
calls and collectives such as broadcast, gather, scatter, all-
reduce, all-to-all, and all-gather.

104.MILC [18] simulates four-dimensional SU(3) lattice
gauge theory. The benchmark is for the conjugate gradient
calculation of quark propagators in quantum dynamics. It
uses non-blocking MPI send/receive calls and some broad-
cast and all-reduce collectives.

5 Experimental results

In this section, we present the performance results of the
proposed small message transfer protocols using point-
to-point, one-sided and collective communication micro-
benchmarks as well as MPI applications.

5.1 Micro-benchmark results

5.1.1 Two-sided communication

Two micro-benchmarks are used to evaluate the potential of
the proposed method in improving MPI two-sided commu-
nications (Eager protocol):

Ping-pong Latency: The ping-pong operation is re-
peated 10000 times and the average one-way latency is mea-
sured for different messages in the Eager message commu-
nication range, from 128 bytes to 8 KB. We keep send and
receive buffers separated to avoid affecting each other in
terms of memory access. This method leads to minimal hash
table and registration cache overhead.

Figure 4 shows the amount of improvement in the Eager
message latency when the send-side copy is removed and the
user buffer is registered for RDMA transfer. As stated ear-
lier, the new method is disabled for messages smaller than
128 bytes due to registration cost and implementation over-
head. Starting from 128 bytes (where the data is being trans-
ferred using DMA, instead of PIO inline method), the exper-
imental results are getting closer to the theoretical benefit.
The maximum improvement is around 14% for 8 KB mes-
sages, close to the 15% theoretical improvement discussed
in Sect. 2.

Note that we have calculated the theoretical improvement
by reducing the current communication latency by the cost
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Fig. 4 Message latency improvement: (a) Fast-path, (b) Non-fast-path

of one buffer copy minus the implementation overhead for
the new method, as shown in (6):

Theoretical_improvement

= (Copy_overhead − New_overhead)/Old_latency (6)

Obviously, this calculation does not take into account the
presumably amortized one-time overhead of buffer registra-
tion. This is a factor that can lead to the difference between
the theoretical and actual improvements, which sometimes
leads to low and even negative improvement (performance
loss) in smaller message sizes. This gap is narrowed down
as the message size or the number of buffer reuses increases.
Therefore, we do not see a performance loss for larger mes-
sages.

In calculating the theoretical improvement, we use the
buffer copy cost incurred in our actual micro-benchmark
test, rather than using a separate micro-benchmark for mea-
suring the copy cost. This is because the buffer copy cost
varies in different situations, depending on the alignment of
both source and destination addresses, with respect to CPU
word size and the memory page size [20, 21]. That is why in
our Send/Receive based micro-benchmark (non-fast-path),
as shown in Fig. 4(b), the improvement (both theoretical and
actual) is lower than the RDMA-based fast-path one. Our
investigation has shown that the memory copy cost in the
former case is lower.

Spectrum Buffer Reuse Latency: The ping-pong test
examined the case with maximum buffer reuse percentage
and high reuse numbers. To simulate an application with
different buffer reuse patterns for different buffers, our next
micro-benchmark is using a spectrum of buffer reuse pat-
terns by increasing the reuse count of each buffer from 1 to
1000. We have considered a 1000-unit buffer set: {buf i |1 <

i < 1000}, in which buf i is being reused i times.
For efficiency and integration purposes, we are directly

using MVAPICH2 registration mechanism and registration

cache. MVAPCIH2 is registering application buffers in one-
page chunks (4 KB on our system). Thus, we have chosen
two buffer allocation schemes: in one case, the buffers are
allocated back to back in memory. In the other case, the
buffers are allocated in separate memory pages, without any
page overlap. In the case that the buffers are allocated back
to back, registration of one buffer may result in registration
of a page that is overlapped with the next buffer, slightly de-
creasing the registration cost for the next buffer. Thus, the
separate-page allocation case essentially shows the worst-
case scenario for buffer registration cost, even leading to
performance loss for smaller messages.

The results for this micro-benchmark using both buffer
allocation schemes are shown in Fig. 5. The effect of buffer
allocation scheme is evident for smaller messages, but al-
most vanishes as messages approach the page size and be-
yond. The highest improvement (12.7%) is again for 8 KB
messages.

5.1.2 One-sided communications

In this section, we present the results for two micro-
benchmarks similar to the ones used for two-sided com-
munication, but using one-sided communication primitives
(i.e. MPI_Get and MPI_Put operations). In both tests, the
application buffers are allocated in separate memory pages
to avoid overlap of registration cost.

In the first test, each one-sided communication call
(MPI_Get or MPI_Put) is followed by a one-sided active tar-
get synchronization (i.e. MPI_Fence). The loop is repeated
for 10000 times and the average time is measured. One-
sided synchronization in the micro-benchmark is required,
because the MPI implementation performs one-sided op-
erations in the subsequent synchronization calls. Figure 6
presents the latency results of this micro-benchmark. The
results are compared to the theoretical improvement, cal-
culated using (6). As one can observe, the MPI_Put actual
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Fig. 5 Improvement as observed in spectrum buffer usage benchmark: (a) Fast-path, (b) Non-fast-path

Fig. 6 MPI one-sided latency improvement: (a) MPI_Put, (b) MPI_Get

improvement results are very close to the theoretical ex-
pectation. The MPI_Put latency is improved for messages
larger than 256 bytes and reaches around 20% for 8 KB
messages.

On the other hand, the MPI_Get improvement is no-
ticeably lower than the expected calculated amount and
shows itself only after 3 KB buffer size. Our investiga-
tion into the MPI_Get code reveals that since the avoided
buffer copy in MPI_Get is performed in the last stage (af-
ter receiving data from the source using RDMA Read) in
MPI_Fence, part of it is overlapped with the previously is-
sued RDMA Write operations used to finalize the synchro-
nization process. Therefore, the buffer copy overhead on
original MPI_Get communication time is less than the ac-
tual memory copy cost, used for the estimation of theo-
retical improvement. Thus, the overhead of our method is
not neutralized by saving the buffer copy for smaller mes-
sages, which translates in some performance loss for 1 KB
or smaller messages.

The second micro-benchmark studied is similar to the
spectrum micro-benchmark used for two-sided communica-
tion. This test is used to estimate the effect of the proposed

Fig. 7 MPI one-sided improvement as observed in spectrum buffer
usage benchmark

method on benchmarks with a spectrum of buffer reuse pat-
terns. One-sided operations are called in the same way as
the first micro-benchmark. The improvement results are pre-
sented in Fig. 7. Obviously, the improvement is lower than
the previous micro-benchmark, because not all buffers are
being reused 100% of the time.
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5.1.3 Collective communications

Most of the MPI collective operations use MPI point-to-
point primitives (i.e. MPI_Send, MPI_Recv and
MPI_SendRecv) to implement the collective algorithm.
Therefore, improving the performance of point-to-point
communications can indirectly affect the collective perfor-
mance as well. In this section, we present the effect of our
Eager protocol improvement on MPI broadcast and scatter
collective operations.

In each iteration of the micro-benchmark, all processes
are engaged in the collective operation, followed by a syn-
chronization operation (MPI_Barrier). We repeat the test for
10000 times and calculate the average time of the collective
across all processes. The synchronization is used to prevent
process skew from propagating in subsequent iterations of
the micro-benchmark.

Figure 8 shows the performance improvement for
MPI_Broadcast and MPI_Scatter operations running with 4
processes and 16 processes on our 4-node cluster. Broadcast
and Scatter use the binomial tree algorithm for data transfer
in the range of messages under study. The only difference
is that scatter distributes data from distinct but back-to-back
buffers, while broadcast distributes data from a single source
buffer among processes.

The results for the 4-process cases are relatively high,
even higher than the point-to-point results (for broadcast),
because more than one data copy is saved per collective.
In the 16-process case, intra-node communications are done
through shared memory, and thus such communications will
not use the improved communication path, resulting in a
lower improvement percentage compared to the 4-process
cases. In addition, the scatter operation uses many interme-
diate buffers that are not re-used.

The curves for the scatter operation sharply decrease for
messages larger than 4 KB. The reason is that in the first sub-
division step of the binomial tree algorithm the root trans-
fers half of the data (at least two buffers) to the first in-
termediate node. Therefore, the data size exceeds the Ea-

Fig. 8 Improvement of MPI collective operations

ger/Rendezvous switching point (9 KB) for messages larger
than 4.5 KB. The other factor is related to the use of tem-
porary buffers in intermediate transfers. Thus, the effect of
our algorithm is reduced for scattering messages larger than
4.5 KB.

5.2 MPI Applications results

In this section, we evaluate the effect of the proposed pro-
tocols on some MPI applications that have been chosen for
this study because of their different buffer reuse characteris-
tics.

In our evaluation, we measure three values for each appli-
cation: the amount of time spent in MPI send operations; the
total communication time spent in MPI send, MPI receive
and MPI wait operations; and the application execution time.
Figure 9 shows the improvements achieved using the pro-
posed method. Table 3 shows the frequently-used buffer per-
centage for the applications on our platform. These values
show the ratio of the frequently-used registered buffers over
all Eager buffers in the buffer reuse hash table.

Both MILC and LU have a high buffer reuse profile.
That is why they benefit from the proposed technique. Their
send times gain 7% and 18.3% improvement, respectively.
Obviously, not all of these gains translate into total com-
munication time improvement. In fact, there are some gen-
eral factors affecting the overall gain in total communication
time and application runtime. The following list summarizes
them:

Fig. 9 Application improvement results

Table 3 Frequently-used buffer percentage for MPI applications (for
messages > 128 B)

MPI application Most frequently-reused
buffer percentage

NPB CG Class C 0%

NPB LU Class C 32.9%

ASC AMG2006 8.7%

SPEC MPI2007 104.MILC 22.6%
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• Level of synchronization among processes and the time
that a matching receiver is arrived: in case of skewed re-
ceivers, the send-time improvement will vanish during the
skew time.

• The ratio of total communication time to the appli-
cation runtime: applications with lower communica-
tion/computation time ratio will see a smaller portion of
the communication time gain reflected into the applica-
tion runtime.

For example, we believe that process skew is the major cause
for this in LU application, since its processes only synchro-
nize once at the beginning.

CG and AMG2006 are applications with lower buffer
reuse statistics. Our method has a slight effect on their per-
formance (less than 1% for CG and around 2% for AMG).
Although CG buffer reuse statistics shown in Table 1 are
very high, those are only for small messages (8 bytes). Since
we have disabled the method for messages smaller than
128 bytes, our technique is effectively disabled for CG.

The reason that AMG2006 does not gain is that its buffer
reuse statistics are very close to the speculative thresh-
old point from which our implementation starts to regis-
ter buffers. However, those threshold values are 25% of the
minimum required reuse statistics (shown in Table 2). Thus,
AMG2006 suffers from the overhead of registering not suf-
ficiently reused buffers. AMG2006 has a low buffer reuse
ratio as well (Table 3) that is lower than the minimum for
our adaptation (20%). Therefore, the adaptation is activated,
stopping the buffer reuse table to grow. This reduces the
overhead on AMG.

6 Related work

To the best of our knowledge, no similar work has been re-
ported on bypassing the memory copy for small messages
transfer over RDMA-enabled interconnects. However, there
exists some related work on improving the performance of
small messages.

The authors in [22] describe a user-level pipeline protocol
that overlaps the cost of memory registration with RDMA
operations, which helps achieving good performance even
in the cases of low buffer reuse. This method is for earlier
versions of RDMA-enabled interconnects in which the reg-
istration cost was comparable to the cost of data transfer.
The contribution of this work is toward eliminating the need
for a pin-cache in MPI, in order to avoid associated memory
management complications.

In [9], a header cache mechanism is proposed for Eager
messages in which the Eager message header is cached at
the receiver side, and instead of a regular header a very small
header is sent for subsequent messages with matching enve-
lope.

Liu et al. [7] designed an RDMA-based Eager protocol
with flow control over InfiniBand. If the RDMA flow con-
trol credits of a connection are used up without being re-
leased by the receiver, the communication falls back on the
Send/Receive channel.

Some work has also looked at the cost of memory regis-
tration in RDMA-enabled networks, especially its high costs
for small buffers [11, 23]. In a recent work presented in
[24], researchers have proposed a pinning model in Open-
MX based on the decoupling of memory pinning from the
application, as a step toward a reliable pinning cache in the
kernel. Their proposal enables full overlap of memory pin-
ning with communication. The pinning of each page can be
overlapped with the communication of the previous mem-
ory page. This method works in Open-MX, which does not
bypass the kernel. Such a method cannot be used in systems
that are exclusively using user-level libraries and OS bypass.

In another work, the authors in [25] present an improved
memory registration cache that performs memory region
registration instead of individual buffer registrations. This
method also uses batch de-registrations to reduce the over-
head. They also propose a method to overlap data transfer
with remote node registration. The work in [25] uses simula-
tion to evaluate the proposed mechanisms for RDMA-based
web applications.

In [26] the authors propose a number of memory man-
agement techniques to improve memory registration issues
in file servers. They pipeline subsequent file transfers over
the network, in order to overlap data copies with data trans-
fers. In another approach they try to make the OS kernel
ready for using Linux sendfile mechanism for RDMA con-
nections. This mechanism helps to avoid copying files into
user space.

7 Conclusions and future work

In this paper, we have proposed a novel technique to improve
the MPI small message transfer protocols over RDMA-
enabled networks. In the proposed method that addresses
both two-sided and one-sided communications in MPI im-
plementation, we avoid one buffer copy and use the ap-
plication buffer to transfer the data directly. Our technique
is suited for applications with high buffer reuse statistics.
However, the employed adaptation mechanism minimizes
the overhead on applications with low buffer reuse profiles.

Micro-benchmark results show that our implementation
achieves up to 14% improvement in the point-to-point Eager
communication time, using RDMA Write operation. This
is very close to the maximum theoretical improvement of
about 15% on our platform. The improvement for Eager pro-
tocol using Send/Receive operations is less, but still close to
its theoretical maximum.
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Micro-benchmark results for MPI one-sided operations
also show significant improvement (close to 20% for
MPI_Put and ∼17% for MPI_ Get operations). We have also
shown that collective communications, such as broadcast,
can achieve even higher, over 25%, improvements because
more than one data copy is saved in each operation.

MPI application results confirm that applications with
high buffer reuse benefit from this technique. Such appli-
cations show much higher improvement for the send-time
than the total communication time and application execution
time. Process synchronization pattern, and the communica-
tion/computation time ratio are the deciding factors that may
affect the total communication time and application runtime
improvement.

For the future work we would like to have the opportunity
to test the proposed method on a larger test-bed with more
nodes involved in the communication.
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