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Abstract—Neighborhood collective communications were in-
troduced in MPI 3.0 to enable application developers to define
new communication patterns and take advantage of the sparsity
in the communication patterns of applications. In this research,
we propose a novel topology- and load-aware distance-halving
design for neighborhood allgather. In this algorithm, each rank
recursively halves the communicator and finds an agent on the
opposite half to offload its outgoing neighbors. This approach
limits communication with distant ranks, thereby decreasing
the latency of neighborhood allgather. Our experimental study
demonstrates that our proposed algorithm can outperform the
default implementation of Open MPI by up to 30x and 14x
speedup for Random Sparse Graph and Moore neighborhood
micro-benchmarks, respectively. Furthermore, our design ex-
hibits up to 4.92x performance gain for an SpMM Kernel.

Index Terms—MPI, topology, neighborhood collective

I. INTRODUCTION

Message passing interface (MPI) [20] is a standard pro-
gramming model developed for High-Performance Computing
(HPC) systems. MPI specifies portable interfaces and seman-
tics for the message-passing model. The most basic opera-
tion in the message-passing model is data movement from
the memory of one process to another, called point-to-point
communication. MPI supports other communication mod-
els, including Remote Memory Access (RMA), Partitioned
communication, collective communication, and neighborhood
collectives. Collectives are a form of communication in which
all processes in a group are involved in the communication.

In global collectives, each process communicates with all
processes or with a root process within a group of pro-
cesses called a communicator. In neighborhood collectives,
the communication of each process is restricted to a neigh-
borhood. MPI neighborhood collectives are defined on top
of the MPI virtual topology interface in which programmers
can specify each process’s incoming and outgoing neighbors.
Using neighborhood collectives, users can create customized
communication patterns. In addition, the information provided
by the user can be used for more optimization at the MPI layer.

A recent survey conducted by the U.S. Exascale Computing
Project (ECP) [2] has reported that the communication of 46%
of HPC applications is limited to a fixed neighborhood and
29% of HPC applications are expected to utilize neighborhood
collectives in their future versions. Additionally, Neighbor-
hood collectives are considered for use in the performance-

critical sections of 9% of them. However, the state-of-the-
art MPI implementations such as Open MPI [23], MPICH
[21], and MVAPICH [22] support a naïve implementation
of neighborhood collectives, where they use direct point-
to-point send/receive operations to outgoing and incoming
neighbors, regardless of the virtual topology, network topology
and the underlying hardware. This approach results in poor
performance and scalability issues.

In this paper, we propose a new algorithm for neighborhood
allgather. We use the virtual topology graph to create a
communication pattern to improve latency in neighborhood
communication by limiting data exchange with distant ranks
and reducing the number of messages. The communication
pattern describes the details of the data exchange and memory
copy operations in a neighborhood collective.

In our approach, each rank recursively halves the com-
municator and in each round, finds a rank on the opposite
half to offload its outgoing neighbors to that rank, called the
agent rank. The agents are selected based on a load-aware
collaborative mechanism. Each rank tries to select an agent
with the maximum number of shared outgoing neighbors on
the agent’s side. Using this mechanism, the communication
with distant nodes is reduced and the load distribution becomes
more balanced.

Our contributions in this paper are as follows:
• We propose a new topology- and load-aware algorithm

for neighborhood allgather that reduces the communica-
tion with distant ranks. This algorithm reduces commu-
nication over the network’s bottlenecks and improves the
communication latency.

• We develop a performance model for the proposed algo-
rithm to show its efficiency mathematically.

• We implemented our algorithm in Open MPI and mea-
sured its performance in different scenarios. We com-
pare the performance and scalability of the proposed
design with the default implementation of neighborhood
allgather in Open MPI as well as with the Common
Neighbor algorithm [8] as one of the state-of-the-art
designs in the literature.

• Our proposed algorithm achieves average speedups of
1.25x to 8.31x over default Open MPI and 1.41x to
8.13x over the Common Neighbor algorithm for Random
Sparse Graphs with densities from 0.05 to 0.7. In Moore



neighborhoods, the average speedup ranges from 1.81x
to 8.78x over default Open MPI and 0.62x to 2.57x over
the Common Neighbor algorithm. Our algorithm achieves
an average speedup of 2.23x over the default Open MPI
and 1.73x over the Common Neighbor algorithm for
an Sparse Matrix Matrix Multiplication (SpMM) kernel
across several matrices.

• We compare the result of the performance model to the
experimental results and validate the accuracy of our
performance model.

The rest of this paper is organized as follows: Section II
provides the necessary background information. Section III
reviews the work related to our research. The motivation
behind this work is discussed in Section IV. The performance
model is presented in Section V. The proposed algorithm
is detailed in Section VI, and its evaluation is presented in
Section VII. Section VIII concludes the paper and discusses
the future work.

II. BACKGROUND

Global collectives provide only a fixed set of communi-
cation patterns, and if a user intends to define a different
communication pattern using global collectives, they have to
define their mechanisms at the user level using other ap-
proaches such as point-to-point communication. This approach
could lead to inefficient communications. Using point-to-point
communication requires identifying diverse communication
patterns within applications and optimizing communication
across various systems, hardware configurations, and network
topologies. This places a significant burden on programmers,
demanding attention to design and development. Additionally,
ensuring correctness and preventing deadlocks at the user level
can be a tedious job [12].

In global collectives, all processes in the communicator are
involved in the communication. This may lead to scalability
issues when the number of processes in a communicator
increases. The time spent on communication generally scales
with Θ(n), with n the number of processes. The total number
of messages scales up with Θ(n.log(n)) [11].

Many HPC applications have sparse communication pat-
terns. In such applications, each process’s interactions are
restricted to a limited neighborhood, regardless of the total
number of processes [24]. If collective communication is used
in these applications, all processes are involved in commu-
nication, which may slow the execution down because of
unnecessary communication. Neighborhood collectives were
introduced in MPI 3.0 [6] to overcome these challenges.

The communication pattern of the processes can be
described by a graph. The nodes of the graph show
the processes and the edges represent the communica-
tion. Neighborhood collectives work in conjunction with
virtual topologies. Among the various interfaces pro-
vided by MPI for specifying the virtual topology graph,
MPI_Dist_graph_create_adjacent stands out as the
most scalable option in which each process defines its incom-
ing and outgoing neighbors.

MPI defines two neighborhood operations: allgather and
alltoall. In the allgather operation, every process sends a data
segment to its neighboring processes and receives data from its
incoming neighbors. However, in the alltoall operation, each
process sends distinct data to every outgoing neighbor. The
focus of this research is on allgather operation.

III. RELATED WORK

Hoefler and Träff [12] introduced the concept of neigh-
borhood collective communications. Their work demonstrates
the advantages of neighborhood collective communications
for HPC applications with sparse communication patterns.
Kumar et al. [16] used a low-level interface called Multi-
send for Deep Computing Messaging Framework (DCMF)
to implement global and neighborhood collective commu-
nications in MPI 2.2. DCMF is an open-source messaging
library developed by IBM for the Blue Gene/P machines.
Using InfiniBand’s network-offload feature, Kandalla et al.
[13] introduced scalable designs for nonblocking neighbor-
hood collective operations for 2D Breadth First Search (BFS).
They use non-blocking neighborhood collective algorithms
to compose global collectives. Unlike these approaches, our
algorithm is portable and does not rely on specific hardware
features.

Ovcharenko et al. [24] presented a general-purpose com-
munication package that works on top of MPI. It uses the
sparsity in the communication pattern of the applications. They
show the importance of reducing the number of messages and
its impact on the communication time. Hoefler and Schneider
[11] discussed the principles of improving the performance of
neighborhood collective operations using different approaches.
They propose two heuristics for neighborhood alltoall and
allgather. They consider applications with a bulk synchronous
parallel (BSP) pattern and assume constraints at the user level
through MPI_Info argument, such as fixed communication
channels or message size, to improve the performance of
neighborhood collectives. In contrast, our algorithm is not
bound to any constraints.

Träff et al. [28], [17], [29], [30] extended the interface
of the neighborhood collectives to isomorphic communica-
tion patterns using Cartesian topologies. They use message
combining to optimize those patterns; however, their approach
does not apply to the general graph neighborhoods. Lübbe
[18] formulated the performance expectations of neighborhood
collectives and virtual topology creation functions as a group
of self-consistent performance guidelines. Mirsadeghi et al.
[19] and Ghazimirsaeed et al. [8] enhanced the efficiency
of neighborhood allgather by employing message combining
techniques for small messages. In their approach, a group
of K processes with common outgoing neighbors is formed,
allowing each process within the group to deliver messages
on behalf of others to these neighbors.

Ghazimirsaeed et al. [9] propose a hierarchical and load-
aware design to enhance the performance of neighborhood
collectives with medium-sized and large messages. Collom
et al. [3] present a locality-aware leader-based algorithm for



persistent alltoallv that shows up to 1.32 times speedup for an
algebraic multi-grid (AMG) solver.

The GPU-aware neighborhood is another direction of re-
search. Khorasani et al. [14] develop an optimized algorithm
for GPU-aware neighborhood alltoallv over AMD and Nvidia
GPUs. Temuçin et al. [27] develop a mechanism for GPU-
aware neighborhood allgather and allgatherv taking advantage
of AMD GPUs and networking. Our algorithm is primarily
designed for CPU clusters but can be adapted for GPU
clusters.

IV. ALGORITHM MOTIVATION AND OVERVIEW

As stated earlier, MPI implementations use naïve point-
to-point communication for neighborhood collectives. This
approach leads to poor performance and scalability, and imbal-
anced communication. Significant performance enhancements
can be achieved by incorporating hardware and network topol-
ogy into the design of neighborhood collective algorithms.

High-end machines are typically designed based on non-
uniform memory access (NUMA) architectures, where min-
imizing communication between cores across the sockets is
an important approach for reducing intra-node communication
latency. However, this approach presents significant challenges
to the communication library due to the complexities of
various hardware platforms. Considering these challenges and
opportunities leads us to the question: How can we design
a new algorithm that considers the node architectures for
neighborhood collectives?

From the inter-node perspective, since every hop in the
network increases the latency, limiting data exchange with
distant nodes is of great importance. The issue is magnified in
networks that employ adaptive routing, as non-minimal paths
may be chosen to bypass congestion, like universal globally
adaptive load-balanced routing (UGAL) in Dragonfly networks
[15]. This will be a bigger issue with network topologies with
larger diameters like Dragonfly+ networks [26].

Moreover, some network topologies, such as fat-tree and
torus, exhibit lower bisection bandwidth relative to injection
bandwidth, leading to decreased performance when congestion
occurs [25]. Other network topologies suffer from similar
problems. For instance, the global links of dragonfly networks
are their main bottleneck, and there have been some efforts
to reduce the traffic over those links through new routing
algorithms [7]. The significant cost associated with network
cables, particularly the long inter-cabinet connections limits
the global links. This indicates that this problem extends
beyond the mentioned topologies, and reducing the commu-
nication between distant nodes can reduce congestion and
communication latency. This prompts the question: How can
we limit the inter-node communication with the ranks
residing on distant nodes in neighborhood collectives?

Given these considerations, we propose a topology- and
load-aware algorithm for neighborhood allgather, by leverag-
ing distance-halving techniques to minimize communication
with remote ranks. In this algorithm, each rank recursively
divides the communicator into halves and selects an agent

in the opposite half to relay its messages. Consequently,
communication with distant ranks is substantially reduced, as
only one message needs to be sent to the other half. Moreover,
this approach decreases the load imbalance among the ranks.

Sack and Gropp [25] have shown how distance halving
can use the available bandwidth to achieve better performance
compared to other algorithms for global allgather collective.
Their algorithm works based on reducing congestion over
the bi-section links of the torus and fat-tree networks. Their
approach is designed for global allgather that always has a
fixed communication pattern. There is no agent and each
process exchanges its message with a fixed rank in each
step and there is no intra-socket phase. On the contrary,
our algorithm is dynamic and designed for graph topologies
covering any arbitrary communication pattern. Our algorithm
uses the virtual topology to optimize the communication
pattern, and agents are selected based on the virtual topology
in a distributed and collaborative mechanism.

A. Overview of the Proposed Algorithm
In this section, we provide an overview of the proposed

algorithm to develop a performance model that could show its
true potential in outperforming the naïve algorithm, for various
message sizes and densities of the communication graph. Our
algorithm has two phases: the halving phase (inter-socket
phase) and the intra-socket phase. The halving phase includes
multiple halving steps. Fig. 1 illustrates the proposed approach
with a communication scenario where rank a communicates
through three halving steps. Ranks x, y, and e are the agents
of a in Steps 0, 1, and 2 respectively. a serves as the agent of
b, c, and e in those steps. We say b, c, and e are the origins
of a. In this algorithm, each rank maintains a buffer called the
main buffer for managing messages exchanged with agents
and origins. The variable main_buf holds a pointer to this
buffer. h1 is the half that includes the current rank (a) and h2
is the opposite half.

In Step 0, a copies its message from the send buffer to the
main buffer and sends it to its agent, rank x. At the same time,
it receives a message from its origin, rank b, and appends it
to the current data in the main buffer. After this step, a does
not communicate with any rank in h2. Rank x will deliver a’s
message to a’s outgoing neighbors in h2, ranks h, j, and k.
Based on the location of h, j, and k, and whether they are on
the same socket with x or not, rank x sends the message of a
to them either through x’s agents in the next steps, or directly
after the halving phase. k is not an outgoing neighbor of x,
but it receives the message of a through x.

In Step 1, a forwards the content of its main buffer (the data
of a and b) to the new agent, rank y, while receiving data from
the new origin, rank c. After this step, a has nothing to do with
h2′. This procedure is repeated in Step 2. Rank a sends its
buffer to e which is working as its agent. At the same time, a
message is received from e that contains the data of e and f .
It includes the data of f since it was the origin of e in Step
0. The size of data in e’s buffer does not increase in Step 1,
because e does not have an origin in that step. We stop halving
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(a) Step 0: x and b are the agent and origin of a, respectively. a sends
its message to x relieving itself from its outgoing neighbors in
h2. However, a must deliver the message of b to b’s outgoing
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Fig. 1: The proposed Distance Halving algorithm for neigh-
borhood allgather, showing the steps involved for process a,
having outgoing neighbors h, j, and k in h2. Other outgoing
neighbors of a are not shown.

when L ranks are left in h1. L shows the number of ranks per
socket. In the given scenario, ranks in h1′′ are mostly located
on the same socket so there are no more halving steps.

After the halving steps are done, there is an extra intra-
socket phase. In this phase, each message in the main buffer
is checked against a list to determine which neighbors should
receive it. The messages are selectively copied to another
buffer and sent to each outgoing neighbor in h1′′. During
this phase, a higher volume of messages may be involved.
However, due to the communication being confined within the
socket, likely through shared memory mechanisms, message
transfer is significantly accelerated compared to the inter-node
and inter-socket phases. To evaluate how well this algorithm
works, we have developed a performance model that we will
elaborate in the following section.

V. PERFORMANCE MODEL

We use the Hockney’s model [10] to develop our perfor-
mance model. The Hockney’s model is a well-known model
and suggests that sending a message of size m between two
processes takes α + m

β long, where α is the latency for each
message, and β is the time it takes to transfer each byte.

Random sparse graphs can represent different virtual topolo-
gies. In this approach, graph G(V,E) represents a communi-
cation pattern in which each vertex v ∈ V corresponds to a
rank, and each edge e ∈ E represents an outgoing neighbor
of a process. Our performance model works based on the
parameter δ (0 ≤ δ ≤ 1), the same parameter δ in Erdős–

Rényi random graph generation model [5]. This parameter
shows the probability of each edge being in the graph based on
a Bernoulli trial, independent of other edges. We need the size
and number of transferred messages to establish our model.

A. Number of Messages
In this section, we calculate the number of messages sent

by each rank. Assume we have a communicator with n ranks
distributed among computing nodes, each having S sockets
with L ranks per socket. Each process recursively halves the
ranks until equal or less than L ranks are left.

Consider a random communication topology graph with
parameter density = δ. The average number of outgoing
neighbors of the ranks is equal to δn and on average δL of
them are on the same socket as the source rank is situated.
We have ⌈log(nL )⌉+ 1 steps of halving. If a rank can find an
agent in all steps, it sends ⌈log(nL )⌉+1 messages in the halving
phase. But in some steps, the current rank does not have an
outgoing neighbor on the other half, particularly if the graph
is too sparse and the number of off-socket outgoing neighbors
of the current rank is smaller than the halving steps. Thus, we
can find the expected value for the number of messages sent
from a rank to out of its socket (noff ):

E[noff ] = min
(
⌈log(n

L
)⌉+ 1, δ(n− L)

)
(1)

When dealing with intra-socket messages, each rank has to
deliver a subset of the messages in the main buffer to the other
ranks on the local socket. Each rank undergoes ⌈log(nL )⌉+ 1
halving steps. Consider two arbitrary ranks a and b on a socket.
The probability of b being the outgoing neighbor of neither
a nor the origins of a is (1 − δ)⌈log(

n
L )⌉+2. Therefore, the

probability of b being at the outgoing neighbor of either a or
its origins is equal to 1− (1− δ)⌈log(

n
L )⌉+2. Since there are L

ranks on the local socket, the average number of intra-socket
messages (nin) is equal to:

E[nin] =
(
1− (1− δ)⌈log(

n
L )⌉+2

)
L (2)

In the worst-case scenario, E[nin] equals L. The number of
messages sent in the naïve algorithm is δn. As an example,
consider a cluster with 2000 processor cores, distributed
among 50 nodes, each with 40 cores over two sockets. If
we run a neighborhood allgather collective with a virtual
topology graph with δ = 0.3, each rank in the Distance
Halving algorithm sends on average 23 (7 off-socket + 16
intra-socket) messages. In comparison, the naïve algorithm
sends 600 messages on average. By increasing δ, the average
number of messages sent in the Distance Halving algorithm
will not exceed 27 messages. In contrast, the naïve algorithm
can potentially send as many messages as the size of the
communicator.

B. Message Size
Starting from the size of the primary messages m, in the

worst-case scenario, the size of the message is doubled in each
halving step. For intra-socket messages, after ⌈log(nL )⌉ + 1
halving steps, on average δL intra-socket outgoing neigh-
bors are left; however, the current process must deliver the



messages of the origins to their outgoing neighbors on the
local socket. The probability of each rank on the current
socket being one of the outgoing neighbors of the origins is
equal to δ and independent of other ranks. The number of
incoming neighbors of each rank on the local socket between
the origins of the current rank follows the binomial distribution
of B(δ,E[nin]). Given that, the expected size of intra-socket
messages (min) can be calculated as:

E[min] = δE[nin]m (3)

C. Constructing the Performance Model
We assume the network is single port, and only one message

can be sent or received at a time. In the naïve algorithm,
δn messages with size m are sent in a row. The number
of incoming messages is also equal to δn. Based on the
Hockney’s Model, the expected communication time for one
rank using the naïve algorithm (tr(naïve)) is:

E[tr(naïve)] = 2δn

(
α+

m

β

)
(4)

Under the single port assumption, the messages of the ranks on
a node are serialized over the network. We do not distinguish
the inter-node, intra-node, and intra-socket bandwidth for
simplicity. Since there are SL ranks on a node, the expected
value of the total collective time for the naïve algorithm
(t(naïve)) is:

E[t(naïve)] = SLE[tr(naïve)] (5)

We find the latency for the Distance Halving algorithm. Con-
sidering the worst-case scenario, the size of the messages is
doubled in each halving step. We calculate based on the worst-
case scenario because the collective operation is considered
completed when all ranks, including those lagging behind,
have completed their work. So the expected value for the off-
socket communication time for one rank (toff (DH)) is:

E[toff (DH)] =

(
α+

m

β

)
+

(
α+

2m

β

)
+...+

(
α+

(2E[noff ])m

β

)
= E[noff ]α+

(2(E[noff ]+1) − 1)m

β
(6)

For the intra-socket messages:

E[tin(DH)] = E[nin]

(
α+

E[min]

β

)
(7)

The time spent sending messages equals E[toff (DH)] +
E[tin(DH)]. The time spent on receiving the messages is
the same. Similar to the naïve algorithm, the messages are
serialized; thus the total communication time is:

E[t(DH)] = 2SL (E[toff (DH)] + E[tin(DH)]) (8)

We compared the performance of these two algorithms using
the performance model shown in Fig. 2. This figure highlights
the potential of the new algorithm and its ability to outperform
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Fig. 2: Performance modeling of the Distance Halving algo-
rithm vs. the naïve algorithm

the naïve algorithm across various message sizes and densities
in Random Sparse Graphs. The calculations are based on
parameters obtained from ping-pong tests conducted on the
Niagara cluster. Additional details about the Niagara cluster
are provided in Section VII.

VI. PROPOSED ALGORITHM

The proposed algorithm consists of the communication
pattern creation routines and the neighborhood collective
operation. The communication pattern illustrates how mes-
sages are transferred when the neighborhood collective is
called. This pattern is built after the creation of the virtual
topology graph and is attached to the communicator along
with the topology graph. The communication pattern creation
routines are executed once, whereas the routines for the
neighborhood collective operation are triggered every time
MPI_Neighbor_allgather is called.

A. Terminology
A summary of the symbols and variables is provided in

Table I to facilitate understanding of this section. The param-
eters h1 and h2, introduced in Section IV-A, are defined as
follows: h1 denotes the half that includes the current rank,
while h2 represents the opposite half. The parameters n and
L, discussed in Section V, are defined as: n represents the size
of the communicator, and L indicates the number of ranks per
socket. The variable p denotes the rank of the current process.
The set I represents the incoming neighbors, with indegree
indicating its size. The set O includes the outgoing neighbors,
with outdegree representing its size.
C denotes the list of candidate agents/origins, where a

candidate is a rank sharing at least one outgoing neighbor
with the current rank. The shared outgoing neighbors of the
candidates and the current rank are documented in matrix
A, similar to matrices used in [8]. The matrix structure is
illustrated in Fig.3, where A[i][j] = 1 indicates that O[i]
is an outgoing neighbor of C[j]. Oon and Ooff are the
outgoing neighbors loaded onto and offloaded from the current
rank, respectively. Ion includes the incoming neighbors who
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Fig. 3: Matrix A. Each rank has a different matrix. Each
row represents a candidate agent/origin, and each column
corresponds to the outgoing neighbors of the current rank.
If A[i][j] equals 1, it shows that outgoing neighbor j (O[j])
is also an outgoing neighbor of candidates[i].

have not offloaded the current rank and the agents of other
incoming neighbors. Oorg are the outgoing neighbors of an
origin to whom the current rank delivers messages. D is a
descriptor assisting agents in message delivery. This descriptor
is represented as a key-value map where the keys are the new
origin and the new origin’s previous origins. For each key, the
value is a list of its outgoing neighbors that are in h1. The
variable Oorg has a structure similar to D.

TABLE I: Description of symbols in the algorithm

symbol Description
n size of comm
L number of ranks on the local socket
h1 the half that includes p
h2 the opposite half (p /∈h2)
p rank of current process
I incoming neighbors of the current rank(inedges)
O outgoing neighbors of the current rank(outedges)

outdegree size of O
inedegree size of I

C candidate agents/origins
A Matrix A

Oon onloaded outgoing neighbors
Ooff outgoing neighbors offloaded to an agent
Ion agents of my inedges ∪ remaining inedges
Oorg outgoing neighbors of origins
D a descriptor to guide agents

sbuf send buffer
rbuf receive buffer
m size of the data in sbuf

B. Communication Pattern
The communication pattern creation routines consists of two

sections. The main function that creates the communication
pattern and the joint mechanism for choosing the agents.
1) Main function

The main function for creating the communication pat-
tern is shown in Algorithm 1. This function is executed
when MPI_Dist_Graph_create_adjacent is called.
The function takes I , O, indegree, outdegree, L, and comm
as inputs and returns the communication pattern. All ranks
within the communicator invoke this function to build their
communication patterns cooperatively.

First, all ranks generate matrix A and initialize other vari-
ables. The while loop in Line 11 shows the main part of the
algorithm. Each iteration of this loop adds a new step to the
communication pattern. t shows the step number. In Lines 13

Algorithm 1: building the communication pattern
1 Input: comm, I , indegree, O, outdegree, L, p, n
2 Output: communication_pattern cp
3 Function build_cp:
4 A,C ← calculate_A(comm,I , indegree, O, outdegree)
5 h1← [0, n− 1]
6 h2← ϕ
7 Oon ← O
8 Ooff ← ϕ
9 Ion ← I

10 t← 0
11 while t ≤ ⌈log( n

L
)⌉+ 1 do

12 step← new step()

13 mid_rank ← (h1.start+h1.end)
2

14 if p ≤ mid_rank then
15 h1← [h1.start ... mid_rank]
16 h2← [mid_rank + 1 ... h1.end]
17 step.agent ← find_agent(comm, A, h1, h2, C)
18 step.origin ← find_origin(comm, A, h1, h2, C)
19 else
20 h2← [h1.start ... mid_rank]
21 h1← [mid_rank + 1 ... h1.end]
22 step.origin ← find_origin(comm, A, h1, h2, C)
23 step.agent ← find_agent(comm, A, h1, h2, C)
24 end
25 Ooff ← ϕ
26 if agent found then
27 Ooff ← Oon ∩ h2
28 Oon ← Oon − h2
29 end
30 send/receive notification to/from I and O
31 D ← ϕ
32 D[p]← Ooff

33 if t > 0 then
34 for origin o ∈ cp.steps[t− 1].origins do
35 if agent found then
36 add o to step.origins
37 list1← (cp.steps[t− 1].Oorg[o]) ∩ h2
38 list2← (cp.steps[t− 1].Oorg[o])− list1
39 D[o]← list1
40 step.Oorg[o]← list2
41 else
42 step.Oorg[o]← cp.steps[t− 1].Oorg[o]
43 end
44 end
45 end
46 if agent/origin found then
47 send/receive D to/from step.agent/step.origin
48 if origin found then
49 add received D to step.Oorg

50 add step to cp.steps
51 t++
52 end
53 return cp
54 end

to 24, h1 and h2 are updated. The current h1 is recursively
divided into two halves and assigned to h1 and h2.

If the current rank is in the lower half (the half that
has smaller ranks), it calls the find_agent function (Line
17) when its candidate origins on the upper half are calling
find_origin in Line 22. After that, all the ranks in the
upper half call the find_agents function in Line 23. At the



same time, all ranks in the lower half call the find_origin
function in Line 18. find_agent and find_origin are two
dual functions used to find the agents/origins. These functions
are explained in Section VI-B2.

The communication pattern must be updated when the agent
and origins are determined. As mentioned earlier, finding an
agent may fail. In Line 26, we check whether a new agent
is found or not. If an agent is found, Ooff is updated to
the outgoing neighbors in h2. These outgoing neighbors are
removed from Oon in Line 28. Then we have to notify our
outgoing neighbors about the selected agent. We send the agent
to those ranks. At the same time, we receive notifications from
all incoming neighbors in h2 to see whether they offloaded the
current rank to another rank or not.

So far, the outgoing neighbors in h2 are notified about the
selected agent, however, the agent does not know the outgoing
neighbors of the current rank. So we send Ooff which includes
the outgoing neighbors of the current rank in h2 to it. However,
the current rank has more responsibilities concerning the ranks
in h2. It may need to deliver the messages of the origins of
the previous steps to some ranks in h2. We offload all of those
ranks to the new agent. Therefore, we have to notify the agent
about the previous origins and their outgoing neighbors. So
we create object D, pack all this information in it, and send
it to the agent. This procedure is shown in Lines 31 to 49.
For each origin o in the origins of the previous step, we save
the outgoing neighbors of o which are in h1 in Oorg in the
communication pattern.

In each step, we remove the outgoing neighbors of origins
that are offloaded to the new agent (list1 in Line 37) and add
them to D which is going to be sent to the new agent. Then
the outgoing neighbors of those origins are updated (list2 in
Line 38) and copied to Oorg in the new step in Line 40.
If no agent was found we copy Oorg of the previous to the
new step in Line 42. Finally, the current step is added to the
communication pattern Line 50. We exit the loop when less
than or equal to L ranks are left in h1. This means all of the
ranks in h1 are located on the current socket and we don’t
need to continue halving. After the loop, the communication
pattern is ready and is returned in Line 53.
2) Agent Selection

When a rank aims to select another rank as its agent, the
target rank must accept to act as the agent since we do not want
to put too much load on the agent. The agents are selected in
a joint selection mechanism containing two steps. In the first
step, all ranks in the first half call find_agent while the ranks
in the other half call find_origin function to respond to the
messages sent by the first half. In the next step, all ranks
in the second half call find_agent while the first half runs
find_origin. These functions are shown in Algorithms 2 and
3 respectively.

Assume rank a halves the ranks into two subsets, h1 and
h2 while a ∈ h1. a chooses a rank that shares the highest
number of common outgoing neighbors in h2. All ranks in
h2 with at least one common outgoing neighbor with a in h2
are considered candidates. If a chooses b in a step, it is not

Algorithm 2: Agent Selection
1 Input: comm, A[][], h1, h2, C
2 Output: selected_agent
3 Function find_agent:
4 find_new_agent← true
5 agent← −1
6 cr ← 0 // Received Signals
7 cs ← 0 // Sent Signals
8 ct // Total number of Signals
9 status_agents[ ] , signal, sender

10 update status_agents
11 ct ← 2 × number of ACTIVE agents
12 while cr+cs < ct do
13 if find_new_agent then
14 agent ← get_best_agent(A, p,h2, status_agents)
15 if agent found then
16 send REQ to agent
17 cs++
18 end
19 find_new_agent← false
20 end
21 if cs+cr == ct then break
22 recv(signal, MPI_ANY_SOURCE, comm, status)
23 cr++
24 sender ← status.MPI_SOURCE
25 if signal == ACCEPT then
26 find_new_agent← false
27 selected_agent← agent
28 status_agents[sender]← SELECTED
29 send EXIT to all ACTIVE agents
30 else if signal == DROP then
31 if sender == agent then
32 find_new_agent← true
33 else
34 send EXIT to sender
35 cs++
36 end
37 status_agents[sender]← INACTIVE
38 end
39 end
40 return selected_agent
41 end

guaranteed that b chooses a in that step. We do this to achieve
better performance in imbalanced communication patterns.
status_agents in Algorithm 2 keeps the status of the

candidates. In Line 10 the status of the candidates that do
not share any outgoing neighbor with the current rank in h2
is set to INACTIVE, as the current rank does not need to
communicate with those ranks. The while loop in Lines 12 to
39 represents the main operation of the function. In this loop,
the current rank communicates with all active candidates. It
has to send REQ or EXIT signal to all candidates in h2 and
receive an ACCEPT or DROP signal in reply. ct and cr track
the number of sent and received signals respectively. These
variables are updated every time a message is sent or received.

The agent variable shows the rank of the current best agent
that we are communicating with. find_best_agent function
returns the best candidate which is the active candidate that
has the maximum number of common outgoing neighbors with
the current rank in h2. If no agent is found, the output of that



Algorithm 3: Origin Selection
1 Input: comm, A[][], h2, h1, C[]
2 Output: selected_origin
3 Function find_origin:
4 update_best_origin← true
5 cr ← 0 // Received Signals
6 cs ← 0 // Sent Signals
7 ct // Total number of Signals
8 status_origins[ ], signal, sender
9 selected_origin← −1

10 update status_origins
11 ct ← 2 × number of ACTIVE origins
12 while cr + cs < ct do
13 if update_best_origin then
14 best_origin← get_best_origin(A,p h1, h2,

status_origins)
15 if best_origin ̸= −1 and

status_origins[best_origin] == WAITING then
16 send ACCEPT to best_origin
17 cs++
18 status_origins[best_origin]← SELECTED
19 selected_origin← best_origin
20 send DROP to all ACTIVE/WAITING origins
21 update cs
22 end
23 update_best_origin← false
24 end
25 if cs + cr == ct then break
26 recv(signal, MPI_ANY_SOURCE, comm, status)
27 cr++
28 sender ← status.MPI_SOURCE
29 if signal == REQ and selected_origin ̸= −1 then
30 if sender == best_origin then
31 send ACCEPT to best_origin
32 cs++
33 selected_origin← best_origin
34 status_origins[sender]← SELECTED
35 send DROP to all ACTIVE/WAITING origins
36 update cs
37 update_best_origin← false
38 else
39 status_origins[sender]← WAITING
40 end
41 else if signal == EXIT then
42 if status_origins[sender] == ACTIVE and

selected_origin ̸= −1 then
43 send DROP to sender
44 cs++
45 if sender == best_origin then
46 update_best_origin← true
47 end
48 end
49 status_origins[sender]← INACTIVE
50 end
51 end
52 return selected_origin
53 end

function is −1 which shows there is no active candidate left
and finding an agent has failed. Otherwise, a request signal is
sent (Line 16) and we have to wait to receive a reply from
the target rank who is running the find_origin function. The
reply is either an ACCEPT or DROP signal. These signals
are received through the receive request posted in Line 22.

Since we are not aware of the sender of the next signal,
MPI_ANY_SOURCE is used.

A received ACCEPT signal indicates that the target rank
has agreed to be the agent of the current rank in this step.
In this case, we notify the other ranks in h2 that they do not
receive a REQ signal from the current rank by sending an
EXIT signal in Line 29. DROP signal means that the agent
has denied the request and we have to find another agent,
therefore we change the status of that agent to INACTIVE
and set find_new_agent to true and the negotiation to a
new candidate is started in the next iteration of the loop.

The find_origin function shown in Algorithm 3 is similar
to find_agent. A process communicates with all active ori-
gins in its opposite half while running this function. The main
part of the function is the loop in Lines 12 to 51. In Line 14,
the rank of the best origin is found using find_best_origin,
similar to the find_best_agent function in Line 14 of Algo-
rithm 2. The best origin is a rank in h2, having the maximum
number of common outgoing neighbors with the current rank
in h1.

If the best origin is WAITING, an ACCEPT signal is sent
to notify it that the current rank accepts to operate as its agent
(Line 16). Then a DROP signal is sent to all ACTIVE and
WAITING origins. If the best origin is not WAITING, the
current rank has to wait for a signal from it. A request is
posted in Line 26 to receive signals from other ranks. REQ
signals are handled in Lines 29 to 40. If the sender process is
the best origin, it means that we received the signal we were
waiting for and we reply with an ACCEPT signal in Line 31.
Otherwise, we change the sender’s status to WAITING in Line
39 and wait for the next incoming signal.

EXIT signals, handled in Lines 41 to 50, reveal that the
sender never chooses the current rank as its agent since it has
already selected another rank. In this case, the sender’s status
changes to INACTIVE. If the sender process is the best origin,
we were awaiting a signal from, the best origin is updated by
changing update_best_origin to true in Line 46. The best
origin is updated in the next iteration of the loop.

C. Neighborhood Operation
Section VI-B shows how a communication pattern is cre-

ated. In this section, we show how the communication pattern
is used to perform the neighborhood communication. Algo-
rithm 4 shows this operation. The inputs are sbuf , rbuf , m,
and comm, representing the send buffer, receive buffer, size of
the message in sbuf , and the communicator, respectively. This
algorithm has two parts: the halving phase and the intra-socket
phase. Lines 3 to 18 show the halving phase, where sbuf is
initially copied to main_buf to be sent to the agents. The
loop starting at Line 5 shows the actual halving steps. In each
iteration, main_buf is sent to the agent while simultaneously
receiving and merging the main_buf from the origin into
the local main_buf . If the incoming message consists of a
message from the incoming neighbors of the current rank, it
is copied to the rubf in Line 16.

The intra-socket phase, spanning Lines 19 to 33, requires



Algorithm 4: MPI_Neighbor_allgather
1 Input: sbuf , rbuf , m, comm
2 communication_pattern cp← comm.cp
3 copy sbuf to main_sbuf
4 d ← m
5 foreach step in cp.steps do
6 dold ← d
7 foreach origin o in step.origins do
8 irecv from o in d-th byte of main_buf
9 d ← d + sizeof(incoming message)

10 end
11 if step has agent then
12 isend first dold bytes of main_buf to step.agent
13 end
14 wait_all
15 foreach origin o ∈ step.origins ∩ I do
16 copy data of o from main_buf to rbuf
17 end
18 end
19 step ← cp.last_step
20 i← 0
21 foreach outgoing rank r in step.Oon do
22 foreach origin o in step.origins do
23 if r ∈ step.Oorg[o] then
24 copy data of o in main_buf to buftemp[i]
25 end
26 end
27 isend buftemp[i++] to r
28 end
29 foreach incoming rank r in step.Ion do
30 irecv from r in buftemp[i++];
31 end
32 wait_all
33 copy received messages to rbuf

the information of the last step of the communication pattern.
In this phase, we have the data of multiple origin ranks stored
in main_buf and Oorg indicates the destinations of each
message. We copy the message from the main_buf to a
temporary buffer and send it to the destination ranks, shown
in Lines 21 to 28. At the same time, we receive the messages
from other ranks on the socket and copy them to the receive
buffer of the current rank (Lines 29 to 31).

VII. PERFORMANCE EVALUATION AND ANALYSIS

We implemented our proposed Distance Halving neigh-
borhood algorithm in Open MPI v5.0.0rc12 and compiled it
with UCX v1.15.0. We compare the performance of our algo-
rithm against the default Open MPI implementation and the
Common Neighbor algorithm [8], using the Random Sparse
Graphs and Moore neighborhood microbenchmarks, and a
neighborhood Sparse Matrix Matrix Multiplication (SpMM)
kernel. The Common Neighbor algorithm is one of the state
of the art algorithms in literature. We launched the Common
Neighbor algorithm with various values of K. We report the
best results in this study.

We ran our experimental studies on the Niagara cluster, in
the Digital Research Alliance of Canada, consisting of 2024
nodes. Each node features 40 CPU cores distributed over two
sockets, running CentOS 7. The cores are either Intel Skylake
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Fig. 4: Latency of the proposed algorithm for Random Sparse
Graphs with various densities and message sizes against the
default Open MPI algorithm for 2160 ranks over 60 nodes

at 2.4 GHz or Cascade Lake at 2.5 GHz. The cluster utilizes
a DragonFly+ topology with Adaptive Routing over EDR
InfiniBand. Each node has either 188 GB or 202 GB of RAM.

A. Random Sparse Graph
We use the Erdős–Rényi model to generate Random Sparse

Graphs. This model is also used in [8], [9], and [27]. Fig.
4 compares the latency of our algorithm against the default
Open MPI for various message sizes and graph densities.
Each node was configured with 36 ranks, reserving 4 cores
per node for the operating system to minimize system noise.
The results confirm the validity of our performance model in
Section V. The difference between the absolute values can be
due to system noise, the accuracy of the Hockney’s model, and
congestion. In most cases for messages smaller than 64KB, our
algorithm experiences a lower latency, particularly for dense
graphs. The performance is on par with Open MPI for 64KB
messages and above, and in some cases outperforms it.

Fig. 5 illustrates the speedup of the proposed algorithm
compared to the Common Neighbor algorithm and the default
implementation of Open MPI, across various densities and
message sizes ranging from 8 bytes to 4 megabytes. The
experiments were conducted with 2160, 1080, and 540 ranks
distributed over 60, 30, and 15 nodes, respectively. The results
demonstrate that the proposed algorithm outperforms the Com-
mon Neighbor algorithm and the Open MPI in many scenarios,
particularly with higher graph densities, such as δ = 0.5 and
δ = 0.7, where the speedups peak at nearly 30x over the
default Open MPI for 32B messages with δ = 0.7. These
highlight the capability of the proposed algorithm to efficiently
leverage denser graphs to minimize the communication time
between distant ranks.

In lower densities and smaller numbers of ranks, com-
munication is rather limited, offering limited opportunity for
enhancement. Therefore, the speedups are more modest com-
pared to denser graphs. The proposed algorithm, nevertheless,
demonstrates up to 3.5 times speedup at lower graph densities
of 0.05 and 0.1, much higher than what the Common Neighbor
algorithm can achieve. For large messages exceeding 256KB,
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Fig. 5: The scaling of the speedup of the proposed algorithm
compared to the Common Neighbor algorithm over the default
Open MPI for Random Sparse graphs with various densities
(δ) and message sizes.

the performance of the algorithm declines, possibly due to
the overhead from additional memory copy operations and
increased network congestion. This problem is amplified in
Random Sparse Graphs because the outgoing neighbors are
uniformly distributed in the communicator and the chance of
the message size being doubled in each step is high. Our study
shows an 80% average success rate across all ranks in finding
an agent with δ = 0.05. This shows, on average, the message

size is doubled in 80% of steps. This reveals that the load is
balanced. In other words, the Random Sparse Graph shows
the worst-case scenario for our algorithm. However, in the
Moore neighborhood study in Section VII-B, we show that
our algorithm achieves better performance for larger messages,
since the outgoing neighbors are not uniformly distributed, and
the proposed algorithm helps in limiting communication with
distant nodes and balancing the communication.

Overall, the average speedup of the proposed algorithm
across all message sizes is between 1.25x and 8.31x over
default Open MPI, and from 1.41x to 8.13x over the Common
Neighbor algorithm for Random Sparse Graphs with densities
ranging from 0.05 to 0.7.

B. Moore Neighborhood
Moore neighborhood is a form of neighborhood defined by

two parameters: r and d. The processes are located on a d
dimensional virtual grid. Each rank communicates with all
ranks within a maximum distance of r in the grid. The number
of neighbors in a Moore neighborhood is (2r+1)d−1. Moore
neighborhoods offer structured and balanced topologies, pre-
senting regular patterns.

We evaluated the speedup of the Distance Halving and
Common Neighbor algorithms over the default Open MPI.
Fig. 6 shows the speedup for 2048 processes over various
Moore neighborhoods and small, medium, and large message
sizes. The experiments were performed on configurations of
64 nodes with 32 ranks per node. As shown in Fig. 6a,
the proposed algorithm can reach up to 14x speedup over
the default algorithm. The results show our algorithm out-
performs other algorithms by up to 3x speedup for medium-
sized messages with more dense neighborhoods. For small
messages, our algorithm shows a high level of speedup when
the neighborhoods are more dense and there is room for
improvement. The high variance shown in some cases is due
to the high variance in the communication time of the default
algorithm, and its impact can also be seen in the Common
Neighbor algorithm. The experiments were repeated multiple
times, and each time different nodes are assigned to the job.
This reveals that the default algorithm is sensitive to the
distance of the nodes and experiences varying communication
times across different configurations. In contrast, our algorithm
is considerably more stable in communication time.

C. Sparse Matrix Matrix Multiplication Kernel
Sparse Matrix Matrix Multiplication Kernel (SpMM) is an

important kernel in computational linear algebra, big data
analytics, and graph algorithms [1]. This kernel calculates the
multiplication of two matrices X and Y to produce matrix
Z = X × Y . Matrices X and Y are distributed among pro-
cesses in a block-stripped row-wise and column-wise fashion.
MPI_Neighbor_allgather is used to gather matrix Y to
each process. At the end of the computation, each process has a
block-stripped row-wise portion of matrix Z. We used various
matrices from The SuiteSparse Matrix Collection (formerly
the University of Florida Sparse Matrix Collection) [4] with
different sizes and sparsity, shown in Table II.
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Fig. 6: The speedup of the proposed algorithm against common neighbor algorithm over default Open MPI with 2048 ranks
for various Moore neighborhoods and small (4KB), medium (256KB), and large (4MB) message sizes

TABLE II: Sparse matrices and their sizes

Matrix Size Non-zero Elements
dwt__193 193 × 193 1843
Journals 128 × 128 6096
Heart1 3600 × 3600 1387773
ash292 292 × 292 2208

bcsstk13 2003 × 2003 83883
cegb2802 2802 × 2802 277362
comsol 1500 × 1500 97645
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Fig. 7: The speedup of the proposed algorithm and Common
Neighbor algorithm over default Open MPI for SpMM for
input matrices in Table II.

Fig. 7 shows that the performance of our algorithm is
superior over the Common Neighbor approach in most cases.
Our algorithm achieves up to 3.33x and 4.92x speedup against
the default algorithm for Heart1 and comsol, respectively.
cegb2802 and bcsstk13 are large matrices, but they are more
sparse compared to Heart1 and comsol. ash292 is a small
matrix and too sparse that does not leave too much room
for improvement, even for the Common Neighbor algorithm.
Overall, the proposed algorithm shows 0.93x to 4.92x speedup.

D. Overhead Analysis
In this section, we analyze the overhead of the proposed

algorithm by measuring the communication pattern creation
time for the Distance Halving and Common Neighbor algo-
rithms for Random Sparse Graphs for 2160 ranks with various
densities. As shown in Fig. 8, the overhead of the proposed
algorithm is around 20%-50% more than the Common Neigh-
bor algorithm. However, this is a one-time overhead, and
considering the speedup achieved by the new algorithm, this
overhead is amortized after multiple neighborhood calls. The
major part of the overhead comes from the agent selection
routines. In the worst-case scenario, each rank attempts to
select every other rank on other sockets as its agent, and all
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Fig. 8: The overhead of the proposed algorithm against the
Common Neighbor algorithm in Random Sparse Graphs with
various densities (δ) and 2160 ranks.

ranks try to choose that rank as their agent. Considering one
request and one response message on each side, each pair of
ranks, located on different sockets communicate 4 messages.
The total number of messages exchanged in the agent selection
routines is equal to 4n(n−L)

2 ∈ O(n2) messages.

VIII. CONCLUSION AND FUTURE WORK

Our research presents a new approach to enhancing com-
munication performance in MPI by proposing a new neighbor-
hood allgather algorithm. The proposed algorithm efficiently
reduces the communication latency by limiting interactions
with distant ranks. Our performance model demonstrates the
performance benefits of the proposed design. Our experimental
study showed the performance and scalability of our algorithm,
achieving up to 30x, 14x, and 4.93x speedup over Open
MPI, for Random Sparse Graph, Moore neighborhood, and
SpMM, respectively. These findings highlight the practical
relevance and effectiveness of our approach in optimizing
communication performance for modern HPC clusters.

As for future work, we intend to focus on improving the
agent selection process to enhance the performance of sparse
virtual topologies with large message sizes. We would also
like to extend our approach to alltoall and other variants of
these neighborhood collectives.
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