
Investigating Scenario-conscious Asynchronous
Rendezvous over RDMA

Judicael A. Zounmevo and Ahmad Afsahi

Department of Electrical and Computer Engineering, Queen’s University
Kingston, ON, Canada

{judicael.zounmevo, ahmad.afsahi}@queensu.ca

Abstract— In this paper, we propose a light-weight
asynchronous message progression mechanism for large
message transfers in Message Passing Interface (MPI)
Rendezvous protocol that is scenario-conscious and
consequently overhead-free in cases where independent
message progression naturally happens. Without requiring a
dedicated thread, we take advantage of small bursts of CPU to
poll for message transfer conditions. The existing application
thread is parasitized for the purpose of getting those small
bursts of CPU. Our proposed approach is only triggered when
the message transfer would otherwise be deferred to the MPI
wait call; and it allows for full message progression, achieving
100% overlap. It does not add to the memory footprint of the
applications, and is effective in improving the communication
performance of most of the applications studied in this paper.

I. INTRODUCTION
Non-blocking point-to-point operations represent an

important performance improvement strategy allowing
communication to be overlapped with computation. With
the availability of Remote Direct Memory Access (RDMA)
technology in modern interconnects such as InfiniBand [1],
iWARP [6] and Myrinet [3], independent message
progression became considerably easier. Still, the start of
data transfer, and consequently the communication
completion, may need further library calls even with the
presence of RDMA [13].

We establish in general that a sufficient condition for an
all-time effective autonomous communication progress
requires three mechanisms: 1) A carrousel mechanism,
meant to ferry messages from one node to another without
any external propelling force. RDMA, by itself, only
represents the carousel; 2) A watchdog mechanism to check
the availability of messages or transfer conditions at either
end of the carrousel; and 3) A trigger mechanism to kick off
the carrousel. This includes dropping/picking up messages
on/from the carrousel if applicable.

Message progression improvement efforts can be
classified in two categories: 1) protocol improvements, and
2) the use of asynchronous communication progress [9].
Protocol improvement approaches, the redesign or
rearrangement of control messages, fall short of covering all
scenarios. As for the asynchronous communication progress,
it happens when the triggering of the message transfer is not

provoked by the application thread that issued the
communication. The simplest and only known embodiment
of this approach so far is by means of a dedicated thread.
That thread can either poll or wait on an interrupt.

In this work we study the feasibility of approaching
asynchronous message progression without resorting to a
thread. In situations where a CPU core cannot be dedicated
to the thread for polling, we seek to provide to the interrupt-
based approach an alternative that is overhead-free when no
improvement is possible. We seek to parasitize the existing
application thread with the watchdog so as to periodically
poll for MPI [2] Rendezvous message transfer conditions.
We have implemented the proposed approach in MVAPICH,
as it possesses an asynchronous Rendezvous
implementation [10] that we intend to compare our proposal
with. The micro-benchmark results confirm that our
proposal incurs no or less overhead compared to the
interrupt-based threading approach, and is on par on
message progression and communication-computation
overlapping. The application results show that our method is
substantially lighter on memory footprint. They also show
that our proposed approach is more adequate in dealing with
the communication wait time and performance for
applications that use blocking calls and most of the
applications that use non-blocking calls.

The rest of this document is organized as follows.
Section 2 presents the related work and builds the
motivations behind this proposal. In Section 3, we describe
our design objectives and implementation on Linux. Section
4 presents our experimental evaluations. Section 5
concludes and gives future directions.

II. RELATED WORK AND MOTIVATIONS
The work in [14] falls in the category of protocol

improvement, and so do [11][12]. The main hindrance for
overlapping in presence of RDMA is the lack of timely
fulfilment of the trigger. Protocol improvement proposals
try to fix this situation by making sure that the trigger is
activated before any computation starts. They do not
provide a watchdog; they try to do without instead. They do
so by either redefining the message transfer initiator
(receiver vs. sender), redesigning the set of handshaking
control messages, or by doing both. Protocol improvement
approaches are unable to improve message progression for

messages bearing MPI_ANY_SOURCE when the
Rendezvous is receiver-initiated [12][14]. They are also
usually more complex and consequently more
synchronizing than the default protocols [11][12]. This last
drawback is exacerbated especially when the protocol
contains a mix of sender-initiated and receiver-initiated sub-
protocols [12][14]. Small et al. [15] propose a profile-driven
mechanism to select the best protocols based on the relative
timing of the calls of send/receive/wait routines. However,
prior profiling is hardly a guarantee because the same
relative timings usually do not hold across executions due to
various nondeterministic host events and system noise.

 Polling by means of a thread is characterized by a fast
response time but it is viable only when spare CPU cores are
available; implying that the parallelism level available to the
application must be halved [9]. The use of interrupts [8][16]
[10] notifies a waiting helper thread for message arrival.
The usual criticism directed to interrupts relates to their
relatively high latency. With InfiniBand and OFED [5],
there is also the impossibility of selectively generating the
interrupts only in cases where the message progression
would not naturally happen. There are three possible receive
scenarios, namely, 1) blocking receive; 2) non-blocking
receive with the Ready To Send (RTS) [12] control message
coming before the receive call is issued; and 3) non-
blocking receive with RTS coming after the receive call
exits. Scenario 3 is the only case where the progression
thread is required in order to prevent the message transfer
from being deferred to the wait call. The interrupt happens
at the receive-side but it is triggered from the send-side by
setting a flag in the header of the RTS control message.
Since the sender can predict neither the arrival time of the
receiver nor the blocking-nature of the receive call, it
always sets the interrupt flag. As a result, the receive-side
progression thread gets waken up for every receive
operation. Triggering the progress thread equals incurring 1)
an interrupt cost, 2) a context switch when the thread wakes
up, and 3) either a lock to get into the progress engine, or
another interrupt(signal) to the application thread to execute
the progress engine [10]. That succession of events
associated with each waking of the progression thread is too
expensive to allow them to happen in situations where they
deterministically have no chance of producing any
improvement. Furthermore, an x86_64 thread adds a fixed
10MB to the resident set size of Linux applications, making
the helper thread method a bit inefficient with respect to
memory footprint.

III. DESIGN OBJECTIVES AND IMPLEMENTATION

A. Design Objectives
The watchdog can only be polling, otherwise the

application thread that we seek to parasitize would have to
block; preventing any possibility of overlapped computation
and communication. Furthermore, the task of checking
control message arrivals is easier with RDMA Read. With

its back-and-forth control message scheme, RDMA Write
would require the watchdog to operate at both sides for each
Rendezvous.

The RDMA Read-based Rendezvous protocol is already
known to allow independent progress and overlapping when
the RTS message reaches the receiver before MPI_Irecv is
issued [12][15][16]. However, when the receiver does not
see the RTS message, the overlapping opportunity is missed.
The application thread must then trigger the message
transfer in the wait call after the completion of any ongoing
computation. We designate by Application Execution Flow
(AEF) the flow made of the default instructions of the
application thread; and by Parasite Execution Flow (PEF)
the flow made of the instructions we are sneaking into the
existing application thread at the middleware-level. Before
any MPI_Irecv is issued, the thread only has AEF. If it was
not active, PEF is spawned by the next MPI_Irecv that
misses its RTS. PEF then periodically executes the
watchdog until RTS is found and the RDMA Read transfer
started (in Fig. 1). Any subsequent MPI_Irecv that executes
before PEF dies just adds a progress request to the queue of
currently watched receive requests. PEF dies when the last
expected RTS is found or when any of the wait family of
routines is called for the last pending request. There is only
a single PEF in the application thread no matter the number
of pending non-blocking receives. For a single pending
Irecv, PEF is active for at most the duration of the possible
overlapping period. The overlapping period ends when any
of the wait family of routines is called for the receive
request. It also ends when the transfer completes; even if
wait is not yet called.

Do
ne

Sender

Receiver

Execution	
 suspended
Execution	
 in	
 progress

LEGEND

PEF RDMA	
 readRTS

Send

MPI_Irecv MPI_Wait
AEF

Application	

thread

Fig. 1: Parasite execution flow-based message progression at receiver-side
for point-to-point communications

B. Design Realization
An asynchronous means is required to disrupt the flow of

AEF at a desired frequency. The use of timers appears to be
an immediate candidate. The timer would periodically
preempt AEF to transfer the CPU to PEF. Then, when done,
PEF willingly retransfers the CPU to AEF. A SIGALRM-
based [7] signal delivery can be singled out as a potential
candidate to fulfil both the goals of disruption and periodic
polling event.

The PEF to AEF transition bears no issue because it is
not preemptive. However, the preemptive nature of the AEF
to PEF transition can raise data access concerns but we still

manage to keep the disruption mechanism lock-free. First,
there is no programmer-accessible data access issue because
PEF is disabled when AEF, i.e., the thread itself, is about to
call the progress engine, which is the only critical section of
interest. There is therefore no risk of AEF being preempted
when inside the progress engine. A similar mechanism is
already used in the thread-helped Rendezvous of
MVAPICH. As for non-programmer-accessible data access
issues, as far as Linux signals are concerned, they relate to
the internal buffers used by the C standard I/O functions as
well as data manipulated by dynamic memory allocations.
However, there is no reasonable motive why dynamic
memory allocation would be required in the progress engine.
Plus, even if stream functions such as printf are needed in
the progress engine for tracing purpose, they can be deferred
by resorting to buffering while inside PEF and then flushing
while outside.

We provide the following environment variables to
control the AEF/PEF alternations. A period ppef_period to
specify the time between two consecutive turn taking of
PEF; a phase ppef_phase to specify the delay before PEF
takes turn the first time after a new request is queued; a
frequency decay ppef_freq_decay to specify a multiplicative
factor of the period after each turn taking; a turn limit
ppef_max_turns_per_req to specify the maximum number
of turn taking after which PEF gives up progressing the
most recent request. The tuning space defined by the afore-
mentioned parameters is very large. Without a prior
knowledge of the application at hand, tuning is thus a
difficult task, and the subject of our future study. As a result,
we propose a two-step rule of thumb that serves as the
default set of parameters. The first step is optimistic. It
assumes that the application is well-behaved; meaning that
the peers are balanced enough to exhibit only small delays
that a small value of the phase (e.g. 2µs or 5µs at most)
should help servicing. If RTS does not arrive in the time
frame of the phase, the rule enters its second step where it
becomes more and more pessimistic after each PEF turn that
does not hit. The pessimistic step is realized by a period that
is multiplied by a frequency decay after each turn. The
pessimistic step gives up a bit of reactiveness each time in
order to limit the overhead imposed on the receiver by very
late senders. On our test system, the rule uses a phase of 2µs,
a period of 10µs and a frequency decay of 2. This rule
generates a PEF turn taking time sequence that is reset every
time a new request is posted.

IV. EXPERIMENTAL EVALUATION
Our experimental setup is a four-node InfiniBand cluster.

Each node is equipped with two quad-core 2GHz AMD
Opteron 2350 processors and 8GB of RAM. The network
devices are Mellanox ConnectX QDR cards and switches.
The Eager/Rendezvous protocol threshold is 9180 bytes.
The tests compare the MVAPICH-ASYNC method, which
implements the interrupt-thread approach, with our

proposed PEF method. RGET designates the default RDMA
Read-based Rendezvous in MVAPICH.

A. Micro-benchmark Results
Both the interrupt-thread and PEF methods operate

exclusively at receive-side and over RDMA Read. The
micro-benchmarks directly focus on receiver-side results
because it is already established that message progression
naturally occurs at sender-side with RDMA Read [10]. Fig.
2 shows the latency overhead of MVAPICH-ASYNC and
PEF compared to RGET. Barriers are used to force arrival
orders for non-blocking tests. The scenarios “blocking
receive” (Fig. 2-a) and “non-blocking receive, sender arrives
first” (Fig. 2-b) show that the overhead of PEF is on average
0µs while MVAPICH-ASYNC exhibits on average 10µs
and 20µs per message transfer respectively. The scenario-
consciousness of PEF justifies its absence of overhead in
these scenarios where MVAPICH-ASYNC is triggered even
though there is no need and no room for improvement.
When the receiver is non-blocking and early compared to
RTS (Fig. 2-c), a progression help is required to avoid
deferring the message transfer to the wait call. Fig. 2-c
shows that while PEF exhibits an overhead of
approximately 5µs MVAPICH-ASYNC exhibits on average
12µs.

Due to space limitations, the message progression and
communication-computation overlapping graphs (Fig. 3)
show only the results of interest; i.e., the receiver-side
performances when RTS is late. We show message
progression for two message sizes, 64KB and 512 KB in Fig.
3-a and Fig. 3-b respectively. We insert a synthetic
computation between MPI_Irecv and MPI_Wait to see if the
communication latency grows proportionally to the
computation length. The computation length is increased
from 50µs to 1000µs by 50µs increments. On all the graphs
in Fig. 3-a and Fig. 3-b, both mechanisms keep the latency
approximately constant and independent from the inserted
computation; meaning that they all allow full message
progression. Since RDMA Read by itself is not progressing
when the receiver comes first, the latency associated with
RGET grows endlessly with the computation length. In
order to avoid dwarfing the other constant curves, RGET is
not presented in Fig. 3-a and Fig. 3-b.

We use the communication-computation overlapping
algorithm described in [13] to generate the overlapping
performances depicted in Fig. 3-c. We show MVAPICH-
RGET in this graph because it does not hamper the
readability of the other curves. The figure shows that
MVAPICH-RGET yields no overlapping. PEF and
MVAPICH-ASYNC both yield close to 100% overlapping.
The overlapping formula is more accurate for larger
messages for which the transfer duration dominates the
communication time. This inaccuracy explains why
MVAPICH-RGET shows nonzero overlapping for 16KB
and 32KB and why the PEF and thread curves are not
superimposed for those messages.

Fig. 2: Receiver-side latency overhead of interrupt-based threading (MVAPICH-ASYNC) vs. PEF. (MVAPICH-RGET is the reference)

Fig. 3: Receive-side message progression and communication-computation overlapping

B. Application-Level Evaluation
For our tests purpose, it is not easy to force an arrival

order-based scenario in applications. Nevertheless, we can
present the impact of both PEF and the interrupt-thread
mechanism on blocking receives. The results, using the
NAS [4] LU application is shown in Fig. 4. The name of the
program run for each test is specified with the class and the
number of ranks appended in that order to the application
name. The results are shown for 4 and 32 ranks, respectively
to mimic the case where there is no shared-memory
communication and the case where the system is loaded
with the maximum possible number of processes. NAS LU,
because it is based on blocking receives, needs no
improvement from any of the mechanisms. The interrupt-
thread (MVAPICH-ASYNC) mechanism degrades the
communication by more than 8% for 4 ranks and by more
than 22% for 32 ranks. In comparison, PEF shows a
degradation of less than 0.2% and 0.9% for 4 and 32 ranks
respectively. Since PEF is actually not triggered at all in this
scenario, those tiny percentages are more tributary to noise
than actual penalty. From the trend observed in Fig. 4, we
can conjecture that the interrupt-thread mechanism would
deal larger overheads to larger jobs; exacerbating the issue
at larger scales.

Fig. 5-a and Fig. 5-b show the wait and communication
improvements respectively for NAS BT, CG, MG and SP.
BT and SP can only be executed over square numbers of
processes; and can reach a maximum of 25 ranks on our 32-
core cluster. We first observe that both mechanisms yield
similar performances for some of the applications; namely,
BT.B.4, CG.B.4, CG.C.32, SP.B.4 and SP.C.25. We also
observe that for BT.C.25, the thread shows better results
while PEF performs better for MG.B.4 and MG.C.32. Once

again, the key observation remains the absence of a general
trend of PEF paying its scenario-consciousness by
underperforming compared to the interrupt-thread
mechanism.

Fig. 4: Effect of each mechanism on a blocking receive-based application

In general, it is important to remind that the actual non-
blocking communication progression is handled by RDMA.
The two means being compared here just trigger the transfer.
As a consequence, when the RTS lateness is reasonable,
non-blocking communication progression performance
while RDMA is available tends to be a two-state variable
swinging between a maximum possible performance and
zero. This explains well the behaviour observed for BT.B.4,
CG and SP in Fig. 5-a and Fig. 5-b. However, application
behaviours can sometimes create some differences in the
performances as shown by BT.C.25, MG.B.4 and MG.C.32.
If RTS arrives mostly early, MVAPICH-ASYNC would
tend to perform poorly compared to PEF. PEF on the other
hand would tend to be outperformed by MVAPICH-
ASYNC when RTS mostly exhibits slightly large delays. In
these cases, PEF tend to be less reactive than MVAPICH-
ASYNC. Note that very large delays are a performance
killer, no matter the Rendezvous mechanism used, as they
end up voiding the reactiveness advantage as well. In

Fig. 5: Application Benchmarks for non-blocking receives

particular, very large delays, when they exist, tend to be the
dominant communication latency component; making the
actual transfer time insignificant.

Finally Fig. 5-c shows the memory footprint overhead of
each mechanism. The overhead is how much each
mechanism adds to the resident set size of each application
when compared to MVAPICH-RGET. For all the
applications, PEF shows an insignificant overhead, reaching
128KB in the worst case for 32 ranks. In comparison, the
interrupt-thread mechanism shows more than 320MB in the
worst case for 32 ranks. As expected on any x86_64 Linux
platform, Fig. 5-c shows an overhead of approximately
10MB per rank for the interrupt-thread mechanism. Once
again PEF seems to be the better mechanism when
scalability is a concern.

V. CONCLUSION AND FUTURE WORK
We realize our proposal by having a Parasite Execution

Flow coexisting with the Application Execution Flow in the
same thread. PEF hosts the control message polling in a
SIGALRM-based signal handler. While the interrupt-thread
mechanism of asynchronous Rendezvous is triggered from
the sender-side; PEF is entirely controlled by the receiver
itself. For having a precise knowledge of the need for
progression help, our mechanism can thus be triggered only
when it is required. As a consequence and unlike its
interrupt-thread counterpart, every overhead that the PEF
mechanism imposes to the application is justifiable. Plus,
PEF proves to be substantially lighter than the interrupt-
thread mechanism for memory footprint overhead. On top of
allowing such a control over the overheads and the memory
footprint it adds to the HPC jobs, the PEF proposal proves
to be on average as efficient as the interrupt-thread
mechanism in terms of performance improvement. To the
best of our knowledge, this proposal is also the first
asynchronous message progression approach that requires
neither a specialized hardware, nor a dedicated separate
thread. For future work, we intend to replace the signal
delivery mechanism by a special-purpose disruption
mechanism by altering the operating system. We also seek
to test the impact of our proposal on larger systems.

ACKNOWLEDGMENT
This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada, Canada

Foundation for Innovation and Ontario Innovation Trust.
We would like to thank Mellanox Technologies for the
resources.

REFERENCES

[1] InfiniBand Trade Association,
http://www.infinibandta.org/index.php.

[2] MPI Forum, http://www.mpi-forum.org/.
[3] Myrinet, http://www.myri.com/.
[4] NAS Parallel Benchmarks,

http://www.nas.nasa.gov/resources/software/npb.html.
[5] OpenFabrics Alliance, http://www.openfabrics.org/.
[6] RDMA Consortium, http://www.rdmaconsortium.org.
[7] The GNU C Library Reference Manual,

http://www.gnu.org/software/libc/manual/.
[8] G. Amerson and A. Apon, “Implementation and design analysis of a

network messaging module using virtual interface architecture,”
Proceedings of the 2004 IEEE International Conference on Cluster
Computing, 2004, pp. 255-265.

[9] T. Hoefler and A. Lumsdaine, “Message progression in parallel
computing - to thread or not to thread?,” Proceedings of the 2008
IEEE International Conference on Cluster Computing, 2008, pp.
213-222.

[10] R. Kumar, A. R. Mamidala, M. J. Koop, G. Santhanaraman and D. K.
Panda, “Lock-free asynchronous Rendezvous design for MPI point-
to-point communication,” Proceedings of the 15th European
PVM/MPI Users' Group Meeting on Recent Advances in Parallel
Virtual Machine and Message Passing Interface, Dublin, Ireland,
2008, pp. 185-193.

[11] S. Pakin, “Receiver-initiated message passing over RDMA
networks,” Proceedings of the 2008 IEEE International Parallel &
Distributed Processing Symposium, 2008.

[12] M. J. Rashti and A. Afsahi, “A speculative and adaptive MPI
Rendezvous protocol over RDMA-enabled interconnects,”
International Journal of Parallel Programming, vol. 37, 2009, pp.
223-246.

[13] M. J. Rashti and A. Afsahi, “Assessing the ability of
computation/communication overlap and communication progress in
modern interconnects,” Proceedings of the 2007 Annual IEEE
Symposium on High-Performance Interconnects, 2007, pp. 117-124.

[14] M. Small and X. Yuan, “Maximizing MPI point-to-point
communication performance on RDMA-enabled clusters with
customized protocols,” Proceedings of the 2009 International
Conference on Supercomputing, Yorktown Heights, NY, USA, 2009,
pp. 306-315.

[15] M. Small, Z. Gu and X. Yuan, “Near-optimal Rendezvous protocols
for RDMA-enabled clusters,” International Conference on Parallel
Processing, 2010, pp. 644-652.

[16] S. Sur, H. Jin, L. Chai and D. K. Panda, “RDMA read based
Rendezvous protocol for MPI over InfiniBand: design alternatives
and benefits,” Proceedings of the 2006 ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, New York,
New York, USA, 2006, pp. 32-39.

