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Abstract— In this paper, we propose a light-weight 
asynchronous message progression mechanism for large 
message transfers in Message Passing Interface (MPI) 
Rendezvous protocol that is scenario-conscious and 
consequently overhead-free in cases where independent 
message progression naturally happens. Without requiring a 
dedicated thread, we take advantage of small bursts of CPU to 
poll for message transfer conditions. The existing application 
thread is parasitized for the purpose of getting those small 
bursts of CPU. Our proposed approach is only triggered when 
the message transfer would otherwise be deferred to the MPI 
wait call; and it allows for full message progression, achieving 
100% overlap. It does not add to the memory footprint of the 
applications, and is effective in improving the communication 
performance of most of the applications studied in this paper. 

I. INTRODUCTION 
Non-blocking point-to-point operations represent an 

important performance improvement strategy allowing 
communication to be overlapped with computation. With 
the availability of Remote Direct Memory Access (RDMA) 
technology in modern interconnects such as InfiniBand [1], 
iWARP [6] and Myrinet [3], independent message 
progression became considerably easier. Still, the start of 
data transfer, and consequently the communication 
completion, may need further library calls even with the 
presence of RDMA [13].  

We establish in general that a sufficient condition for an 
all-time effective autonomous communication progress 
requires three mechanisms: 1) A carrousel mechanism, 
meant to ferry messages from one node to another without 
any external propelling force. RDMA, by itself, only 
represents the carousel; 2) A watchdog mechanism to check 
the availability of messages or transfer conditions at either 
end of the carrousel; and 3) A trigger mechanism to kick off 
the carrousel. This includes dropping/picking up messages 
on/from the carrousel if applicable. 

Message progression improvement efforts can be 
classified in two categories: 1) protocol improvements, and 
2) the use of asynchronous communication progress [9].  
Protocol improvement approaches, the redesign or 
rearrangement of control messages, fall short of covering all 
scenarios. As for the asynchronous communication progress, 
it happens when the triggering of the message transfer is not 

provoked by the application thread that issued the 
communication. The simplest and only known embodiment 
of this approach so far is by means of a dedicated thread. 
That thread can either poll or wait on an interrupt.  

In this work we study the feasibility of approaching 
asynchronous message progression without resorting to a 
thread. In situations where a CPU core cannot be dedicated 
to the thread for polling, we seek to provide to the interrupt-
based approach an alternative that is overhead-free when no 
improvement is possible. We seek to parasitize the existing 
application thread with the watchdog so as to periodically 
poll for MPI [2] Rendezvous message transfer conditions. 
We have implemented the proposed approach in MVAPICH, 
as it possesses an asynchronous Rendezvous 
implementation [10] that we intend to compare our proposal 
with. The micro-benchmark results confirm that our 
proposal incurs no or less overhead compared to the 
interrupt-based threading approach, and is on par on 
message progression and communication-computation 
overlapping. The application results show that our method is 
substantially lighter on memory footprint. They also show 
that our proposed approach is more adequate in dealing with 
the communication wait time and performance for 
applications that use blocking calls and most of the 
applications that use non-blocking calls. 

The rest of this document is organized as follows.  
Section 2 presents the related work and builds the 
motivations behind this proposal. In Section 3, we describe 
our design objectives and implementation on Linux. Section 
4 presents our experimental evaluations. Section 5 
concludes and gives future directions. 

II. RELATED WORK AND MOTIVATIONS 
The work in [14] falls in the category of protocol 

improvement, and so do [11][12]. The main hindrance for 
overlapping in presence of RDMA is the lack of timely 
fulfilment of the trigger. Protocol improvement proposals 
try to fix this situation by making sure that the trigger is 
activated before any computation starts. They do not 
provide a watchdog; they try to do without instead. They do 
so by either redefining the message transfer initiator 
(receiver vs. sender), redesigning the set of handshaking 
control messages, or by doing both. Protocol improvement 
approaches are unable to improve message progression for 



messages bearing MPI_ANY_SOURCE when the 
Rendezvous is receiver-initiated [12][14]. They are also 
usually more complex and consequently more 
synchronizing than the default protocols [11][12]. This last 
drawback is exacerbated especially when the protocol 
contains a mix of sender-initiated and receiver-initiated sub-
protocols [12][14]. Small et al. [15] propose a profile-driven 
mechanism to select the best protocols based on the relative 
timing of the calls of send/receive/wait routines. However, 
prior profiling is hardly a guarantee because the same 
relative timings usually do not hold across executions due to 
various nondeterministic host events and system noise. 

 Polling by means of a thread is characterized by a fast 
response time but it is viable only when spare CPU cores are 
available; implying that the parallelism level available to the 
application must be halved [9]. The use of interrupts [8][16] 
[10] notifies a waiting helper thread for message arrival. 
The usual criticism directed to interrupts relates to their 
relatively high latency. With InfiniBand and OFED [5], 
there is also the impossibility of selectively generating the 
interrupts only in cases where the message progression 
would not naturally happen. There are three possible receive 
scenarios, namely, 1) blocking receive; 2) non-blocking 
receive with the Ready To Send (RTS) [12] control message 
coming before the receive call is issued; and 3) non-
blocking receive with RTS coming after the receive call 
exits. Scenario 3 is the only case where the progression 
thread is required in order to prevent the message transfer 
from being deferred to the wait call. The interrupt happens 
at the receive-side but it is triggered from the send-side by 
setting a flag in the header of the RTS control message. 
Since the sender can predict neither the arrival time of the 
receiver nor the blocking-nature of the receive call, it 
always sets the interrupt flag. As a result, the receive-side 
progression thread gets waken up for every receive 
operation. Triggering the progress thread equals incurring 1) 
an interrupt cost, 2) a context switch when the thread wakes 
up, and 3) either a lock to get into the progress engine, or 
another interrupt(signal) to the application thread to execute 
the progress engine [10]. That succession of events 
associated with each waking of the progression thread is too 
expensive to allow them to happen in situations where they 
deterministically have no chance of producing any 
improvement. Furthermore, an x86_64 thread adds a fixed 
10MB to the resident set size of Linux applications, making 
the helper thread method a bit inefficient with respect to 
memory footprint. 

III. DESIGN OBJECTIVES AND IMPLEMENTATION 

A. Design Objectives 
The watchdog can only be polling, otherwise the 

application thread that we seek to parasitize would have to 
block; preventing any possibility of overlapped computation 
and communication. Furthermore, the task of checking 
control message arrivals is easier with RDMA Read. With 

its back-and-forth control message scheme, RDMA Write 
would require the watchdog to operate at both sides for each 
Rendezvous. 

The RDMA Read-based Rendezvous protocol is already 
known to allow independent progress and overlapping when 
the RTS message reaches the receiver before MPI_Irecv is 
issued [12][15][16]. However, when the receiver does not 
see the RTS message, the overlapping opportunity is missed. 
The application thread must then trigger the message 
transfer in the wait call after the completion of any ongoing 
computation. We designate by Application Execution Flow 
(AEF) the flow made of the default instructions of the 
application thread; and by Parasite Execution Flow (PEF) 
the flow made of the instructions we are sneaking into the 
existing application thread at the middleware-level. Before 
any MPI_Irecv is issued, the thread only has AEF. If it was 
not active, PEF is spawned by the next MPI_Irecv that 
misses its RTS. PEF then periodically executes the 
watchdog until RTS is found and the RDMA Read transfer 
started (in Fig. 1). Any subsequent MPI_Irecv that executes 
before PEF dies just adds a progress request to the queue of 
currently watched receive requests. PEF dies when the last 
expected RTS is found or when any of the wait family of 
routines is called for the last pending request. There is only 
a single PEF in the application thread no matter the number 
of pending non-blocking receives. For a single pending 
Irecv, PEF is active for at most the duration of the possible 
overlapping period. The overlapping period ends when any 
of the wait family of routines is called for the receive 
request. It also ends when the transfer completes; even if 
wait is not yet called. 
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Fig. 1: Parasite execution flow-based message progression at receiver-side 
for point-to-point communications 

B. Design Realization 
An asynchronous means is required to disrupt the flow of 

AEF at a desired frequency. The use of timers appears to be 
an immediate candidate. The timer would periodically 
preempt AEF to transfer the CPU to PEF. Then, when done, 
PEF willingly retransfers the CPU to AEF. A SIGALRM-
based [7] signal delivery can be singled out as a potential 
candidate to fulfil both the goals of disruption and periodic 
polling event.  

The PEF to AEF transition bears no issue because it is 
not preemptive. However, the preemptive nature of the AEF 
to PEF transition can raise data access concerns but we still 



manage to keep the disruption mechanism lock-free. First, 
there is no programmer-accessible data access issue because 
PEF is disabled when AEF, i.e., the thread itself, is about to 
call the progress engine, which is the only critical section of 
interest. There is therefore no risk of AEF being preempted 
when inside the progress engine. A similar mechanism is 
already used in the thread-helped Rendezvous of 
MVAPICH. As for non-programmer-accessible data access 
issues, as far as Linux signals are concerned, they relate to 
the internal buffers used by the C standard I/O functions as 
well as data manipulated by dynamic memory allocations. 
However, there is no reasonable motive why dynamic 
memory allocation would be required in the progress engine. 
Plus, even if stream functions such as printf are needed in 
the progress engine for tracing purpose, they can be deferred 
by resorting to buffering while inside PEF and then flushing 
while outside. 

We provide the following environment variables to 
control the AEF/PEF alternations. A period ppef_period to 
specify the time between two consecutive turn taking of 
PEF; a phase ppef_phase to specify the delay before PEF 
takes turn the first time after a new request is queued; a 
frequency decay ppef_freq_decay to specify a multiplicative 
factor of the period after each turn taking; a turn limit 
ppef_max_turns_per_req to specify the maximum number 
of turn taking after which PEF gives up progressing the 
most recent request. The tuning space defined by the afore-
mentioned parameters is very large. Without a prior 
knowledge of the application at hand, tuning is thus a 
difficult task, and the subject of our future study. As a result, 
we propose a two-step rule of thumb that serves as the 
default set of parameters. The first step is optimistic. It 
assumes that the application is well-behaved; meaning that 
the peers are balanced enough to exhibit only small delays 
that a small value of the phase (e.g. 2µs or 5µs at most) 
should help servicing. If RTS does not arrive in the time 
frame of the phase, the rule enters its second step where it 
becomes more and more pessimistic after each PEF turn that 
does not hit. The pessimistic step is realized by a period that 
is multiplied by a frequency decay after each turn. The 
pessimistic step gives up a bit of reactiveness each time in 
order to limit the overhead imposed on the receiver by very 
late senders. On our test system, the rule uses a phase of 2µs, 
a period of 10µs and a frequency decay of 2. This rule 
generates a PEF turn taking time sequence that is reset every 
time a new request is posted. 

IV. EXPERIMENTAL EVALUATION 
Our experimental setup is a four-node InfiniBand cluster. 

Each node is equipped with two quad-core 2GHz AMD 
Opteron 2350 processors and 8GB of RAM. The network 
devices are Mellanox ConnectX QDR cards and switches. 
The Eager/Rendezvous protocol threshold is 9180 bytes. 
The tests compare the MVAPICH-ASYNC method, which 
implements the interrupt-thread approach, with our 

proposed PEF method. RGET designates the default RDMA 
Read-based Rendezvous in MVAPICH. 

A. Micro-benchmark Results 
Both the interrupt-thread and PEF methods operate 

exclusively at receive-side and over RDMA Read. The 
micro-benchmarks directly focus on receiver-side results 
because it is already established that message progression 
naturally occurs at sender-side with RDMA Read [10]. Fig. 
2 shows the latency overhead of MVAPICH-ASYNC and 
PEF compared to RGET. Barriers are used to force arrival 
orders for non-blocking tests. The scenarios “blocking 
receive” (Fig. 2-a) and “non-blocking receive, sender arrives 
first” (Fig. 2-b) show that the overhead of PEF is on average 
0µs while MVAPICH-ASYNC exhibits on average 10µs 
and 20µs per message transfer respectively. The scenario-
consciousness of PEF justifies its absence of overhead in 
these scenarios where MVAPICH-ASYNC is triggered even 
though there is no need and no room for improvement. 
When the receiver is non-blocking and early compared to 
RTS (Fig. 2-c), a progression help is required to avoid 
deferring the message transfer to the wait call. Fig. 2-c 
shows that while PEF exhibits an overhead of 
approximately 5µs MVAPICH-ASYNC exhibits on average 
12µs. 

Due to space limitations, the message progression and 
communication-computation overlapping graphs (Fig. 3) 
show only the results of interest; i.e., the receiver-side 
performances when RTS is late. We show message 
progression for two message sizes, 64KB and 512 KB in Fig. 
3-a and Fig. 3-b respectively. We insert a synthetic 
computation between MPI_Irecv and MPI_Wait to see if the 
communication latency grows proportionally to the 
computation length.  The computation length is increased 
from 50µs to 1000µs by 50µs increments. On all the graphs 
in Fig. 3-a and Fig. 3-b, both mechanisms keep the latency 
approximately constant and independent from the inserted 
computation; meaning that they all allow full message 
progression. Since RDMA Read by itself is not progressing 
when the receiver comes first, the latency associated with 
RGET grows endlessly with the computation length. In 
order to avoid dwarfing the other constant curves, RGET is 
not presented in Fig. 3-a and Fig. 3-b. 

We use the communication-computation overlapping 
algorithm described in [13] to generate the overlapping 
performances depicted in Fig. 3-c. We show MVAPICH-
RGET in this graph because it does not hamper the 
readability of the other curves.  The figure shows that 
MVAPICH-RGET yields no overlapping. PEF and 
MVAPICH-ASYNC both yield close to 100% overlapping. 
The overlapping formula is more accurate for larger 
messages for which the transfer duration dominates the 
communication time. This inaccuracy explains why 
MVAPICH-RGET shows nonzero overlapping for 16KB 
and 32KB and why the PEF and thread curves are not 
superimposed for those messages. 



   
Fig. 2: Receiver-side latency overhead of interrupt-based threading (MVAPICH-ASYNC) vs. PEF. (MVAPICH-RGET is the reference) 

 

   
Fig. 3: Receive-side message progression and communication-computation overlapping 

B. Application-Level Evaluation 
For our tests purpose, it is not easy to force an arrival 

order-based scenario in applications. Nevertheless, we can 
present the impact of both PEF and the interrupt-thread 
mechanism on blocking receives. The results, using the 
NAS [4] LU application is shown in Fig. 4. The name of the 
program run for each test is specified with the class and the 
number of ranks appended in that order to the application 
name. The results are shown for 4 and 32 ranks, respectively 
to mimic the case where there is no shared-memory 
communication and the case where the system is loaded 
with the maximum possible number of processes. NAS LU, 
because it is based on blocking receives, needs no 
improvement from any of the mechanisms. The interrupt-
thread (MVAPICH-ASYNC) mechanism degrades the 
communication by more than 8% for 4 ranks and by more 
than 22% for 32 ranks. In comparison, PEF shows a 
degradation of less than 0.2% and 0.9% for 4 and 32 ranks 
respectively. Since PEF is actually not triggered at all in this 
scenario, those tiny percentages are more tributary to noise 
than actual penalty. From the trend observed in Fig. 4, we 
can conjecture that the interrupt-thread mechanism would 
deal larger overheads to larger jobs; exacerbating the issue 
at larger scales. 

Fig. 5-a and Fig. 5-b show the wait and communication 
improvements respectively for NAS BT, CG, MG and SP. 
BT and SP can only be executed over square numbers of 
processes; and can reach a maximum of 25 ranks on our 32-
core cluster. We first observe that both mechanisms yield 
similar performances for some of the applications; namely, 
BT.B.4, CG.B.4, CG.C.32, SP.B.4 and SP.C.25. We also 
observe that for BT.C.25, the thread shows better results 
while PEF performs better for MG.B.4 and MG.C.32. Once 

again, the key observation remains the absence of a general 
trend of PEF paying its scenario-consciousness by 
underperforming compared to the interrupt-thread 
mechanism.  

 

 
Fig. 4: Effect of each mechanism on a blocking receive-based application 

In general, it is important to remind that the actual non-
blocking communication progression is handled by RDMA. 
The two means being compared here just trigger the transfer. 
As a consequence, when the RTS lateness is reasonable, 
non-blocking communication progression performance 
while RDMA is available tends to be a two-state variable 
swinging between a maximum possible performance and 
zero. This explains well the behaviour observed for BT.B.4, 
CG and SP in Fig. 5-a and Fig. 5-b. However, application 
behaviours can sometimes create some differences in the 
performances as shown by BT.C.25, MG.B.4 and MG.C.32. 
If RTS arrives mostly early, MVAPICH-ASYNC would 
tend to perform poorly compared to PEF. PEF on the other 
hand would tend to be outperformed by MVAPICH-
ASYNC when RTS mostly exhibits slightly large delays. In 
these cases, PEF tend to be less reactive than MVAPICH-
ASYNC. Note that very large delays are a performance 
killer, no matter the Rendezvous mechanism used, as they 
end up voiding the reactiveness advantage as well. In



   
Fig. 5: Application Benchmarks for non-blocking receives 

particular, very large delays, when they exist, tend to be the 
dominant communication latency component; making the 
actual transfer time insignificant. 

Finally Fig. 5-c shows the memory footprint overhead of 
each mechanism. The overhead is how much each 
mechanism adds to the resident set size of each application 
when compared to MVAPICH-RGET. For all the 
applications, PEF shows an insignificant overhead, reaching 
128KB in the worst case for 32 ranks. In comparison, the 
interrupt-thread mechanism shows more than 320MB in the 
worst case for 32 ranks. As expected on any x86_64 Linux 
platform, Fig. 5-c shows an overhead of approximately 
10MB per rank for the interrupt-thread mechanism. Once 
again PEF seems to be the better mechanism when 
scalability is a concern. 

V. CONCLUSION AND FUTURE WORK 
We realize our proposal by having a Parasite Execution 

Flow coexisting with the Application Execution Flow in the 
same thread. PEF hosts the control message polling in a 
SIGALRM-based signal handler. While the interrupt-thread 
mechanism of asynchronous Rendezvous is triggered from 
the sender-side; PEF is entirely controlled by the receiver 
itself. For having a precise knowledge of the need for 
progression help, our mechanism can thus be triggered only 
when it is required. As a consequence and unlike its 
interrupt-thread counterpart, every overhead that the PEF 
mechanism imposes to the application is justifiable. Plus, 
PEF proves to be substantially lighter than the interrupt-
thread mechanism for memory footprint overhead. On top of 
allowing such a control over the overheads and the memory 
footprint it adds to the HPC jobs, the PEF proposal proves 
to be on average as efficient as the interrupt-thread 
mechanism in terms of performance improvement. To the 
best of our knowledge, this proposal is also the first 
asynchronous message progression approach that requires 
neither a specialized hardware, nor a dedicated separate 
thread. For future work, we intend to replace the signal 
delivery mechanism by a special-purpose disruption 
mechanism by altering the operating system. We also seek 
to test the impact of our proposal on larger systems. 
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