CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2002; 14:859-883 (DOI: 10.1002/cpe.697)

Efficient communication using
message prediction for clusters
of multiprocessors

Ahmad Afsahi!*T and Nikitas J. Dimopoulos?

lDepan‘ment of Electrical and Computer Engineering, Queen’s University, Kingston,
Canada K7L 3N6

2Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 3055, Victoria,
Canada V8W 3P6

SUMMARY

With the increasing uniprocessor and symmetric multiprocessor computational power available today,
interprocessor communication has become an important factor that limits the performance of clusters of
workstations/multiprocessors. Many factors including communication hardware overhead, communication
software overhead, and the user environment overhead (multithreading, multiuser) affect the performance
of the communication subsystems in such systems. A significant portion of the software communication
overhead belongs to a number of message copying operations. Ideally, it is desirable to have a true zero-
copy protocol where the message is moved directly from the send buffer in its user space to the receive
buffer in the destination without any intermediate buffering. However, due to the fact that message-passing
applications at the send side do not know the final receive buffer addresses, early arrival messages have to
be buffered at a temporary area. In this paper, we show that there is a message reception communication
locality in message-passing applications. We have utilized this communication locality and devised different
message predictors at the receiver sides of communications. In essence, these message predictors can be
efficiently used to drain the network and cache the incoming messages even if the corresponding receive
calls have not yet been posted. The performance of these predictors, in terms of hit ratio, on some parallel
applications are quite promising and suggest that prediction has the potential to eliminate most of the
remaining message copies. We also show that the proposed predictors do not have sensitivity to the starting
message reception call, and that they perform better than (or at least equal to) our previously proposed
predictors. Copyright © 2002 John Wiley & Sons, Ltd.

KEY WORDS: message prediction; clusters; communication locality; message passing interface (MPI);
zero-copy

1. INTRODUCTION

With the increasing uniprocessor and symmetric multiprocessor (SMP) computational power
available today, interprocessor communication has become an important factor that limits the

*Correspondence to: Ahmad Afsahi, Department of Electrical and Computer Engineering, Queen’s University, Kingston,
Canada K7L 3N6.

TE-mail: ahmad @ee.queensu.ca

Received 14 September 2000
Copyright © 2002 John Wiley & Sons, Ltd. Revised 9 November 2001

860 A. AFSAHI AND N. J. DIMOPOULOS %

performance of workstation clusters. Essentially, communication overhead is one of the most important
factors affecting the performance of parallel computers. Many factors affect the performance of
communication subsystems in parallel systems. Specifically, communication hardware and its services,
communication software, and the user environment (multiprogramming, multiuser) are the major
sources of the communication overhead.

Communication software overhead currently dominates communication time in clusters of
workstations. Even with high-performance networks [1,2] available today, there is still a gap between
what the network can offer and what the user application can see. The communication software
overhead cost comes mainly from three different sources; crossing protection boundaries several times
between the user space and the kernel space, passing several protocol layers, and involving a number
of memory copying operations.

Several researchers are working to minimize the cost of crossing protection boundaries, and using
simpler protocol layers by utilizing user-level messaging techniques such as Active Messages (AM) [3],
Fast Messages (FM) [4], Virtual Memory-Mapped Communications (VMMC-2) [5], U-Net [6], Virtual
Interface Architecture (VIA) [7], and PM [8]. A significant portion of the software communication
overhead belongs to a number of message copying operations. Ideally, message protocols should
transfer messages in a single copy (this is usually called a true zero-copy). In other words, the protocol
should copy the message directly from the send buffer in its user space to the receive buffer in the
destination without any intermediate buffering. However, applications at the send side do not know the
final receive buffer addresses and, hence, the communication subsystems at the receiving end still copy
messages unnecessarily from the network interface to a system buffer, and then from the system buffer
to the user buffer when the receiving application posts the receive call.

Some researchers have tried to avoid memory copying [4,5,9-11]. While they have been able to
remove the memory copying between the application buffer space and the network interface at the
send side by using user-level messaging techniques, they have not been able to remove the memory
copying at the receiver sides completely. They may achieve zero-copy messaging at the receiver sides
only if the receive call is already posted, a rendezvous-type communication is used for large messages,
or the destination buffer address is already known by a pre-communication.

We are interested in bypassing the memory copying at the destination in the general case,
synchronous or asynchronous, eager or rendezvous and for sender-initiated communications as in
MPI [12]. In this paper, we argue that it is possible to address the message copying problem at the
receiving side by speculation. We support our claim by showing that messages display a form of locality
at the receiving ends of communications.

This paper, for the first time introduces the notion of message prediction for the receiving side of
message-passing systems [13,14]. By predicting the next receive communication call, and hence the
next destination buffer address, before the receiving call is posted we will be able to copy the message
directly into the CPU cache speculatively before it is needed so that an effect of a zero-copy can be
achieved. As a matter of fact, communication operations at both the sender and the receiver sides may
be issued at the earliest possible time, while the predictive algorithms will ensure that they will be
scheduled and the data made available at the optimal place and time. We are interested in utilizing
similar predictors as in [15], but this time at the receiver sides to predict the next consumable message
and drain the network as soon as the message arrives.

The first contribution of this paper is that we show evidence that there exists message communication
locality at the receiver sides of message-passing parallel applications. The second contribution of this

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

% MESSAGE PREDICTION FOR CLUSTERS OF MULTIPROCESSORS 861

work is the introduction and evaluation of different message predicting techniques for the receiving
side of message-passing systems.

This paper concentrates on message predictions at the destinations in message-passing systems using
MPI in isolation. This is analogous to branch prediction, and coherence activity prediction [16] in
isolation. Our tools are not yet ready to measure the effectiveness of our predictors on the application
run-time. Our preliminary evaluation measures the accuracy of the predictors in terms of hit ratio.
The results are quite promising and suggest that prediction has the potential to eliminate most of the
remaining message copies.

In Section 2 of this paper, we explain the motivation behind this work and mention related works.
We elaborate on how prediction would help eliminate the message copies at the receiving side of
communications in Section 3. Our experimental methodologies to gather communication traces of our
parallel applications are explained in Section 4. In Section 5, we show communication frequency and
unique message identifier distributions in the applications, and present evidence of message locality
at the receiver sides. In Section 6, we propose our message predictors and present their performance
on the applications. In Section 7, we briefly discuss the integration of the predictors with the network
interface. Finally, we conclude our paper in Section 8.

2. MOTIVATION AND RELATED WORK

High-performance computing is increasingly concerned with efficient communication across the
interconnect due to the availability of high-speed advanced processors. Modern networks such as
Myrinet [1] and Gigabit Ethernet [2], provide high communication bandwidth and low communication
latency. However, because of high processing overhead due to communication software including
network interface control, flow control, buffer management, memory copying, polling, and interrupt
handling, users cannot see much difference compared to traditional local area networks.

Fortunately, several user-level messaging techniques have been developed to remove the operating
system kernel and protocol stack from the critical path of communications [3-8]. In this way,
applications can send and receive messages without operating system intervention which often greatly
reduces the communication latency.

Data transfer mechanisms and message copying operations, control transfer mechanisms, address
translation mechanisms, protection mechanisms, and reliability issues are the key factors for
the performance of a user-level communication system. A significant portion of the software
communication overhead belongs to a number of message copying operations. With the traditional
software messaging layers, there are usually four message copying operations from the send buffer
to the receive buffer, as shown in Figure 1. These copies are namely (1) from the send buffer to the
system buffer, (2) from the system buffer to the network interface (NI), (3) at the other end of the
communication from the network interface to the system buffer, and (4) from the system buffer to
the receive buffer when the receive call is posted. Note that we have not considered data transfer from
the network interface at the sending process to the network interface at the receiving process as a
separate copy. In this paper, we are particularly interested in avoiding message copying operations at
the receiver sides of communications.

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

862 A. AFSAHI AND N. J. DIMOPOULOS %

Send Process Receive Process
Send buffer Receive buffer
A Bl
S i
System buffer System buffer
NI NI

\
‘
Figure 1. Data transfers in a traditional messaging layer.

2.1. Avoiding extra message copying operations

In the following sections, we mention a number of research works that have attempted to bypass the
system buffer copying at the send and receive sides of communications.

2.1.1. Using programmed I/O and DMA at the send side

At the send side, some user-level messaging layers use programmed I/O to avoid system buffer copying.
FM uses programmed I/O while AM-II and BIP (Basic Interface for Parallelism) do so only for small
messages. Some other user-messaging layers use DMA. VMMC-2, U-Net, and PM use DMA to bypass
the system buffer copy while AM-II and BIP do so only for large messages. In systems that use DMA,
applications or a library dynamically pin and unpin pages in the user space that contain the send and
the receive buffers.

2.1.2. Using redirection mechanisms at the receiver side

Contrary to the send side, bypassing the system buffer copying at the receiving side may not be
achievable. Processes at the sending side do not know the receive buffer addresses, however they
do know the receive processes. Therefore, when a message arrives at the receiving side it has to be
buffered if the receive call has not been posted yet. VMMC [17] for the SHRIMP multicomputer used
a communication model that provides direct data transfer between the sender’s and receiver’s virtual
address space. However, it can achieve zero-copy transfer only if the sender knows the destination
buffer address. Therefore, the receiver exports its buffer address by scouting a message to the sender

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

% MESSAGE PREDICTION FOR CLUSTERS OF MULTIPROCESSORS 863

before the actual transmission can take place. This leads to a two-phase rendezvous protocol which
adds to the network traffic and network latency, especially for short messages.

VMMC-2 [5] uses a transfer redirection mechanism instead. It uses a default, redirectable receive
buffer for a sender who does not know the address of the receive buffer. When a message arrives at the
receiving network interface, the redirection mechanism checks to see if the receiver has already posted
its buffer address. If the receive buffer has been posted earlier than the message arrival, the message
will be directly transferred to the user buffer. Thus it achieves a zero-copy transfer. If the buffer address
is not posted, the message must be buffered in the default buffer. It will then be transferred when the
receive buffer is posted. Thus, it achieves a one-copy transfer. However, if the receiver posts its buffer
address when the message arrives, part of the message is buffered at the default buffer and the rest is
transferred to the user buffer.

Fast sockets [9] has been built using active messages. It uses a mechanism at the receiver side called
receive posting to avoid the message copy in the fast socket buffer. If the message handler knows that
the data’s final memory destination is already known upon message arrival, the message is directly
moved to the application user space. Otherwise, it has to be copied into the fast socket buffer.

FM 2.x [4] uses a similar approach to fast sockets, namely layer interleaving. FM collaborates with
the handler to direct the incoming messages into the destination buffer if the receive call has already
been posted.

MPI-LAPI [10] is an implementation of MPI on top of LAPI for the IBM SP machines. In the
implementation of the eager protocol, the header handler of the LAPI returns a buffer pointer to LAPI
which tells LAPI where the packets of the message must be reassembled. If a receive call has been
posted, the address of the user buffer is returned to LAPI. If the header handler does not find a
matching receive, it will return the address of an early arrival buffer and hence a one-copy transfer
is accomplished. Meanwhile, messages with larger sizes than the eager size are transferred using a
two-phase rendezvous protocol.

Some research projects have proposed solutions to multi-protocol message-passing interfaces on
clusters of multiprocessors (Clumps) using both shared-memory for intra-node communications and
message-passing for inter-node communications [11,18]. MPICH-PM/CLUMP [11] is an MPI library
implemented on a cluster of SMPs. It uses a message-passing only model where each process runs on a
processor of an SMP node. For inter-node communications, it uses eager and rendezvous protocols.
For short messages, it achieves one-copy using the eager protocol, as the message is copied into
a temporary buffer if the MPI receive primitive has not been issued. For large messages, it uses
the rendezvous protocol to achieve zero-copy by using a remote write operation but it needs an
extra communication. For intra-node communications, it achieves one-copy using a kernel primitive
that allows one to copy messages from the sender to the receiver without the involvement of a
communication buffer.

BIP-SMP [18], for intra-node communications, uses shared memory for small messages with
two memory copy, and direct copy for large messages with a kernel overhead. For inter-node
communications, it works like MPI-BIP with one memory copy.

2.1.3. Re-mapping and copy-on-write techniques

Other techniques to bypass extra copying are the re-mapping and copy-on-write techniques [19,20].
Both techniques require one to switch to the supervisor mode, acquire necessary locks to the

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

864 A. AFSAHI AND N. J. DIMOPOULOS %

virtual memory data structure, change the virtual memory mapping at several levels for each page,
then perform Translation Lookaside Buffer (TLB)/cache consistency actions, and finally return to
the user mode. This limits the performance of the page re-mapping and copy-on-write techniques.
A zero-copy TCP stack is implemented in Solaris by using copy-on-write pages and re-mapping to
improve communication performance [19]. It achieves a relatively high throughput for large messages.
However, it does not have a good performance for small messages. This work is also solely dedicated
to the SUN Solaris virtual memory system.

fbufs [20] also uses the re-mapping technique to avoid the penalty of copying large messages across
different layers of the protocol stack. However, fbufs allows re-mapping only for a limited range of
user virtual memory.

As stated above, the user-level messaging techniques may not achieve zero-copy communication
all the time at the receiver side of communications. Meanwhile, the major problem with all page re-
mapping techniques is their poor performance for short messages, which is extremely important for
parallel computing.

2.1.4. Compiler techniques

There are numerous works at the compiler level, such as the works in [21,22], which are directly related
to enhancing the communication performance. These works achieve this by moving non-blocking sends
and receives as far up in the code as possible and move blocking waits as far down in the code as
possible. This way, the chances that the corresponding receive has been invoked before the message
arrives at the receiver are increased.

2.2. Prediction techniques

Prediction techniques have been proposed in the past to predict the future accesses of sharing patterns
and coherence activities in distributed shared memory (DSM) by looking at their observed behavior
[16,23-26]. These techniques assume that memory accesses and coherence activities in the near
future will follow past patterns. In [26], the authors proposed hardware regular stride techniques to
prefetch several blocks ahead of the current data block. More elaborate hardware-based irregular stride
prefetching approaches have been proposed in [25]. Kaxiras and Goodman [24] have recently proposed
an instruction-based approach which maintains the history of load and store instructions in relation
to cache misses and predicting their future behavior. This is in contrast to address-based techniques
that keep data-access history for the predictions. In [16], the authors devised a general pattern-based
predictor, cosmos, to learn and predict the coherence activity for a memory block in a DSM. Cosmos
makes a prediction in two steps. First, it uses a cache block address to index into a message history
table to obtain the <processor and message-type> tuples of the last few coherence messages received
for that cache block. Then it uses these <processor, message-type> tuples to index a pattern history
table to obtain a <processor, message-type> tuple prediction. In [23], the authors proposed a new
class of pattern-based predictors, memory sharing predictors, to eliminate the coherence overhead on
a remote access latency by just predicting the memory request messages, those primary messages that
invoke a sequence of protocol actions. It improves prediction accuracy over cosmos by eliminating the
acknowledgements messages from the pattern tables. It also reduces memory overhead and perturbation
in the tables due to message re-ordering.

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

% MESSAGE PREDICTION FOR CLUSTERS OF MULTIPROCESSORS 865

In software-controlled prefetching, the programmer or compiler decides when and what to prefetch
by analyzing the code and inserting prefetch instructions. In [27], the authors used software-controlled
prefetching and multithreading to hide and reduce the latency in shared memory multiprocessors.

Recently, we proposed some heuristics to predict the destination target of subsequent communication
requests at the send side of communications in message-passing systems [15]. However, to the best of
our knowledge, no prediction technique has been proposed for the receive side of communications in
message-passing systems to reduce the latency of a message transfer.

This paper reports on an innovative approach for removing message copying operations at the
receiving ends of communications for message-passing systems [13,14]. We argue that it is possible
to address the message copying problem at the receiving sides by speculation. We introduce message
prediction techniques such that messages can be directly transferred to the cache even if the receive
calls have not yet been posted.

3. USING MESSAGE PREDICTIONS

In this section, we analyze the problem of the early arrival of messages at the destinations in message-
passing systems. In such systems, a number of messages arrive in arbitrary order at the destinations.
The consuming process or thread will consume one message at a time. If we know which message is
going to be consumed next, then we can move the message upon its arrival to near the place where it is
to be consumed (e.g. a staging cache), or we could schedule which thread to execute next, preferably
at the same processor as the consuming thread, to enhance the chances that the data will be in the
processor cache when it is accessed by the consumer.

To do this, we identify three different issues. First, we need to decide which message is going to be
consumed next. This can be done by devising receive call predictors, which are history-based predictors
that predict subsequent receive calls by a given process in a message-passing program. Second, we need
to decide where and how this message is to be moved in the cache. Third, efficient cache re-mapping
and late binding mechanisms need to be devised for when the receive call is posted.

In this work, we are addressing the first problem, that is, devising message predictors and evaluating
their performance. We are working on several methods to address the remaining issues. We shall report
on these issues in the future.

4. EXPERIMENTAL METHODOLOGY

In exploring the effect that different heuristics have on predicting the next receive call, we
utilized a number of parallel benchmarks, and extracted their communication traces on which
we applied our predictors. We have used some well-known parallel benchmarks form the NAS
Parallel Benchmarks (NPB) suite [28], and the Parallel Spectral Transform Shallow Water Model
(PSTSWM) application [29]. We used the MPI [12] implementation of the NPB suite (version 2.3),
and version 6.2 of the PSTSWM application. Specifically, we used the block tridiagonal (BT), scalar
pentadiagonal (SP), and conjugate gradient (CG) benchmarks from the NPB suite [28]. We did not
use the multigrid (MG) and lower-upper diagonal (LU) benchmarks from the NPB suite because
these benchmarks use MPI_ANY_SOURCE in some of their receive calls (MPI_Recv and MPI _Irecv).

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

866 A. AFSAHI AND N. J. DIMOPOULOS %

This means that the applications may receive a particular message from different sources depending on
the order of arrival.

We are only interested in the patterns of the point-to-point communications between pairwise
processes in our applications. For this, we executed these applications on an IBM SP2 machine.
We wrote our own profiling code using the wrapper facility of the MPI to gather the communication
traces. We did this by inserting monitor operations into the profiling MPI library for the communication
related activities. These operations include arithmetic operations for the calculation of the desired
characteristics. Collecting communication traces does not affect the communication patterns of the
applications. Note that the applications use pure message passing for communications between
different processes (no shared-memory programming or threading) and the processes can be run on the
same or different processors of the IBM SP without any effect on the communication patterns. It is also
worth mentioning that the applications have the same communication patterns in other environments
such as networks of PCs and thus our work is not bound to any specific system.

We considered different system sizes and problem sizes for our applications to evaluate the
performance of our prediction heuristics. Specifically, we experimented with the workstation class “W’,
and the large class ‘A’ of the NPB suite, and the default problem size for the PSTSWM application.
The NPB results are almost the same for the ‘W’ and ‘A’ classes. Hence, we report only those for
the ‘A’ class here. Although the results presented in this paper are for the above parallel applications,
these applications have been widely used as benchmarks representing the computations in scientific
and engineering parallel applications.

5. RECEIVER-SIDE LOCALITY ESTIMATION

Our applications use blocking and non-blocking standard MPI receive primitives, namely MPI_Recv
and MPI Irecv [12]. MPI Irecv (buf, count, datatype, source, tag, comm, request) is a standard non-
blocking receive call. It immediately posts the call and returns. Hence, data are not available at the
time of return. It needs another call to complete the call. All applications in our study use this type of
receive call. MPI_Recv (buf, count, datatype, source, tag, comm, status) is a standard blocking receive
call. When it returns, data are available at the destination buffer. The PSTSWM application uses this
type of receive call.

One of the communication characteristics of any parallel application is the frequency of
communications. Figure 2 illustrates the minimum, average, and maximum number of receive
communication calls in the applications under different system sizes. We ran our applications once for
each different system size and counted the number of receive calls for each process of the applications.
Hence, in Figure 2, by average, minimum, and maximum, we mean the average, minimum, and
maximum number of receive calls taken over all processes of each application. It is clear that all
processes in the BT, SP, and CG applications have the same number of receive communication calls,
while processes in the PSTSWM application have different numbers of receive communication calls.

As stated earlier, MPI_Recv and MPI_Irecv calls have a 7-tuple set consisting of source, tag, count,
datatype, buf, comm, and status or request. In order to choose precisely one of the received messages
at the network interface and transfer it to the cache, our predictors need to consider all the details of a
message envelope, that is, source, tag, count, datatype, buf, and comm (we do not consider status and
request as they are just a handle when the calls return). We did not rely only on the buffer address,

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

MESSAGE PREDICTION FOR CLUSTERS OF MULTIPROCESSORS 867

BT SP
- Minimum - Minimum
8000 Il Average 16000({ I Average
® [Maximum » [Maximum
3 8
g 6000 ©12000¢
[0} ‘©
g 8
“54000F S 8000
3 3
S IS
32000¢ = 4000¢
0 L [
4 16 25 49 0 4 9 16 25 49
Number of Processes Number of Processes
CG PSTSWM
Hl Minimum Hl Minimum
4000H I Average 8000} [Average
® [] Maximum » [] Maximum
T ©
(&) (]
02)30007 u2>6000—
(0] (0]
[$] [&]
o o
52000+ S 4000¢F
9] o)
Ke} Ke}
: :
=1000f =2000¢
0 4 8 . 0 4 8 16 25 32 49
Number of Processes Number of Processes

Figure 2. The number of receive calls per process in the applications under different system sizes.

buf, of a receive call as many processes may send their messages to the same buffer address of a
particular destination process. Neither could we depend only on the sender, source, of a message, or
on the length, count, of a message. Therefore, we assigned a different identifier for each unique 6-tuple
found in the communication traces of the applications. Figure 3 shows the number of unique message
identifiers in our applications under different system sizes. By average, minimum, and maximum, we
mean the average, minimum, and maximum number of unique identifiers taken over all processes
of each application. It is evident that all processes in the BT and CG applications have the same
number of unique message identifiers, while processes in the SP and PSTSWM applications have
different numbers of unique message identifiers (except when the number of processes is four for the
SP benchmark).

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

868

A. AFSAHI AND N. J. DIMOPOULOS

Number of unique message identifiers

Number of unique message identifiers

Hl Minimum
I Average
[] Maximum

N
<)
;

(8]
o
T

n
o
T

—
o
T

o

4 9

16

BT

M

25

Number of Processes

Il Minimum
I Average
[1 Maximum

-y
)]
T

—_
o
T

(%))
T

o

8

CG

16

|

|

Number of Processes

n W
)] o
T

N
o
T

_
o
T

n w » [& [} ~
o o o o o o

Number of unique message identifiers
o

Number of unique message identifiers
[9)) [9)]

o

SP
Hl Minimum
I Average
[] Maximum
4 9 16 25 36 49
Number of Processes
PSTSWM
O, —
Hl Minimum
| Il Average
0/l 7 Maximum
0,
0,
0,
O,
0,
0 | I
4 9 16 25 32 36 49

Number of Processes

Figure 3. The number of unique message identifiers per process in the applications under different system sizes.

Figure 4 shows the distribution of each unique message identifier for process zero of the applications
when the number of processes is 64 for CG and 49 for the other applications. We chose process zero
because this process has the largest number of unique message identifiers among all processes, and
is also responsible for distributing data and verifying the results of the computation. As is shown in
Figure 3, the message identifiers are evenly distributed in BT. However, the distributions of the message
identifiers in CG and PSTSWM are almost bimodal with two separated peaks. The SP benchmark
shows four different peaks for the message identifiers.

Copyright © 2002 John Wiley & Sons, Ltd.

Concurrency Computat.: Pract. Exper. 2002; 14:859-883

MESSAGE PREDICTION FOR CLUSTERS OF MULTIPROCESSORS 869

22

BT (49 processes) SP (49 processes)

[2]
©200% ©2000(
= 2
S bS]
g 3
o 1507 15001
(o)) ()
(4] (o))
[] (]
s 100 g
?_ g 1000r
° 5
5 s
£ 50 S 500
> £
z z

0 0 ‘

0 10 20 30 40 0 6 12 18
Message Identifier Message Identifier
CG (64 processes) PSTSWM (49 processes)
500¢ 407

@ @
] kS
= 400{ =
c 30,
S S
5300/ %
a 320
() ()
= 200} 2
S [S)
g 10
2100} €
=} =}
4 4

0 P ?? PP 0

0 4 8 12 16 0 200 400 600 800

Message Identifier Message Identifier

Figure 4. The distribution of the unique message identifiers for process zero in the applications.

5.1. Communication locality

In the context of message-passing programming, many parallel algorithms are built from loops
consisting of computation and communication phases. Therefore, communication patterns may be
repetitive. This has motivated researchers to find or use the communications locality properties of
parallel applications [15,30-32]. Kim and Lilja [30] have shown that there is a locality in message
destination, message sizes, and consecutive runs of send/receive primitives in parallel algorithms.
They have proposed and expanded the concept of memory access locality based on the Least Recently
Used (LRU) stack model to determine these localities. In an earlier work [15], we have shown the
communication locality of message-passing applications in terms of message destination locality.

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

870 A. AFSAHI AND N. J. DIMOPOULOS %

We define the terms message reception locality in conjunction with this work. By message reception
locality we mean that if a certain message reception call has been used it will be re-used with high
probability by a portion of code that is ‘near’ the place that was used earlier, and that it will be re-used
in the near future.

In the following section, we present the performance of the classical LRU, LFU, and FIFO heuristics
on the applications to see the existence of locality or repetitive receive calls. We use the hit ratio to
establish and compare the performance of these heuristics. As a hit ratio, we define the percentage of
times that the predicted receive call was correct out of all the receive communication requests.

5.2. The LRU, FIFO, and LFU heuristics

The Least Recently Used (LRU), First-In-First-Out (FIFO), and Least Frequently Used (LFU)
heuristics all maintain a set of k (k is the window size) unique message identifiers. If the next message
identifier is already in the set, then a hit is recorded. Otherwise, a miss is recorded and the new message
identifier replaces one of the identifiers in the set according to which of the LRU, FIFO, or LFU
strategies is adopted.

Figure 5 shows the average hit ratios of the LRU, FIFO, and LFU heuristics on the application
benchmarks when the number of processes is 64 for CG and 49 for all other applications (taken over
all processes of the applications). The plots start at the window size of one and stop at the window size
equal to the maximum number of message identifiers for each application. It is clear that the hit ratios in
all benchmarks approach one as the window size increases. The LRU and FIFO heuristics have a zero
hit ratio on the BT, CG, and PSTSWM applications up to a certain window size. The reason for this
is that these applications, after their initialization phase, cycle through a number of message reception
calls and then enter their ending phase (however, the SP application does not follow this). The LRU and
FIFO heuristics have a zero hit ratio if the window size is less than the cycle length. The performance
of the FIFO algorithm is the same as that of the LRU for the BT and PSTSWM benchmarks, and
almost the same as that of the SP and CG benchmarks. The LFU algorithm consistently has a better
performance than the LRU and FIFO heuristics on the BT, CG, and PSTSWM applications. It also
has a better performance than the LRU and FIFO heuristics on the SP benchmark for window sizes of
greater than five. It is interesting to see that a real application like PSTSWM needs window sizes of
greater than 150 to achieve a good performance (hit ratios above 80%) under the LFU policy. Similar
performance results for the LRU, FIFO, and LFU heuristics on other system sizes can be found in [33].

Essentially, the LRU, FIFO and LFU heuristics do not predict the next receive call exactly, but show
the probability that the next receive call might be in the set. For instance, the SP benchmark shows a
nearly 60% hit ratio for a window size of five under the LRU heuristic. This means that for 60% of
the time one of the five most recently issued calls will be issued next. These heuristics perform better
when the window size k is sufficiently large. However, this large window adds to the hardware/software
implementation complexity, as one needs to move all messages in the set to the cache in the likelihood
that one of them is going to be used next. This is prohibitive for large window sizes.

We are interested in having predictors that can predict the next receive call with a high probability.
In Section 6, we introduce our novel message predictors which employ different heuristics and evaluate
their performance.

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

% MESSAGE PREDICTION FOR CLUSTERS OF MULTIPROCESSORS 871

BT (49 processes) SP (49 processes)

I
i
0.8 ||
o !
© I
Tosf !
< |
[0)]
=) !
©0.4f |
(0] |
> 1
< |
0.2} : 0.2 E—y
! --- LRU
o | o - - FIFO
0 10 20 30 40 50 0 5 10 15 20
Window size Window size
CG (64 processes) PSTSWM (49 processes)
1r T
|
0.8} 0.8f |
g i) |
© o i
Tos} 0.6} !
= < i
8 S |
©0.4}f ©0.4f e
(0] (0]
> >
< < !
1
0.2 0.2 I — LFU
i --- LRU
I -- FIFO
0 . . . , 0 :
0 5 10 15 20 0 100 200 300 400 500 600 700
Window size Window size

Figure 5. The effects of the LRU, FIFO, and LFU heuristics on the applications.

6. MESSAGE PREDICTORS

The set of predictors proposed in this section predicts the subsequent receive calls based on the past
history of communication patterns on a per process basis. We propose two types of predictors in this
work: the Single-cycle predictor, which is purely a dynamic predictor, and Tag-based predictors, which
are static/dynamic predictors. In the Single-cycle predictor, predictions are done dynamically at the
network interface without any help from the programmer or compiler. In the Tag-based predictors,
Tagging, Tag-cycle, and Tag-bettercycle, predictions are done dynamically at the network interface
as well, but they require some information to be passed from the program to the network interface.
This can be done with the help of the programmer and/or the compiler through inserting instructions

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

872 A. AFSAHI AND N. J. DIMOPOULOS %

Request sequence
1 355135577 3 55

(AL e

5 7
Predicted sequence
Cycle Cycle Cycle Cycle Cycle
formation formation formation formation formation

Figure 6. The operation of the Single-cycle predictor on the sample request sequence.

such as pre-receive (tag) in the program. The Tag-based predictors can be pure dynamic predictors
if another level of prediction is done on the tags themselves at the network interface. In this way,
there is no need for the program to pass pre-connect (tag) information to the network interface.
We leave this approach for future research. These heuristics were originally proposed in [15] to predict
the destination target of subsequent communication requests at the send side of communications.
However, in this paper, we have added an ‘initialization phase’ to the Single-cycle, Tag-cycle, and Tag-
bettercycle predictors to remove the initialization patterns of communications, if any [14]. We explain
this initialization phase in Section 6.1.1.

It is worth mentioning that the message re-ordering effect [23] (messages from different processes
may arrive out-of-order even if messages from the same processes arrive in order in most networks)
has no effect on the predictions as the predictors predict the next receive calls based on the patterns of
the receive calls in the program that runs on the same process and not on the arriving messages, unless
the order of receive calls depends on the order of message arrival. Note that in the following figures,
by average, minimum, and maximum, we mean the average, minimum, and maximum hit ratios taken
over all processes of each application.

6.1. The single-cycle predictor

The Single-cycle predictor consists of an ‘initialization phase’ followed by a ‘prediction phase’.
The ‘prediction phase’ is based on the fact that if a group of receive calls are issued repeatedly in a
cyclical fashion, then we can predict the next request one step ahead. Figure 6 illustrates an example for
the operation of the Single-cycle predictor. The top trace represents the sequence of requested receive
calls, while the bottom trace represents the predicted sequence. The arrows with the cross represent
misses, while those with the circle represent hits. The ‘dash’ in place of a predicted request indicates
that a cycle is being formed, and therefore no prediction is offered (note that this is also added to the
misses).

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

% MESSAGE PREDICTION FOR CLUSTERS OF MULTIPROCESSORS 873

— -~
- ~
Ve

, Y
1 3546 7 8 91046 7 8

Figure 7. The message reception call sequence (from left to right).

This predictor implements a simple cycle discovery algorithm. Starting with a cycle-head receive
call (this is the first receive call that is requested at start-up, or the receive call that causes a miss),
we log the sequence of requests until the cycle-head receive call is requested again. Note that, during
cycle formation, the previously requested message destination is offered as the predicted message
destination. This stored sequence constitutes a cycle, and can be used to predict the subsequent
requests. If the predicted receive call coincides with the subsequent requested one, then we record
a hit. If the requested receive call does not coincide with the predicted one, then we record a miss and
the cycle formation stage commences with the cycle-head being the receive call that caused the miss.

6.1.1. Initialization phase

We have added an initialization phase to the Single-cycle, Tag-cycle, and Tag-bettercycle predictors
proposed in [13,15]. As stated earlier, the prediction phase of the Single-cycle predictor (and all other
predictors) starts with the first message reception call as the cycle-head. However, it is possible that we
never find this cycle-head again to establish a cycle. Thus, the predictor fails with a zero prediction hit
ratio. This may also happen if we skip the first receive call and start forming the cycles with the second
receive call as the cycle-head. In other words, applications may have a sequence of receive calls at the
beginning that may never come back to them and hence no cycle is formed. This is illustrated in the
example in Figure 7. It is clear that no cycle will be formed with the message cycle-heads 1, 3, and 5.
However, if we skip ahead we see that a cycle is formed with the message cycle-head 4. This cycle
consists of message calls 4, 6, 7, 8, 9, and 10. The first three message reception calls 1, 3, and 5, are
considered to be the initialization pattern. The new Single-cycle predictor (along with the Tag-cycle
and Tag-bettercycle predictors) proposed in this paper starts with the ‘initialization phase’, and then
after forming the first cycle switches to the ‘prediction phase’. It is evident that misses are added until
the first cycle is formed. Note that in the ‘initialization phase’ of the predictors, we looked for a cycle
with a length of greater than 5. This was chosen arbitrarily so as not to form a small cycle.

The performance of the Single-cycle predictor is shown in Figure 8. Its performance is consistently
very high (hit ratios of more than 0.9).

6.2. The Tagging predictor

The Tagging predictor assumes a static communication environment in the sense that a particular
communication receive call in a section of code will be the same one with a large probability. We attach
a different fag (this is different than the tag in an MPI communication call; it may be a unique identifier
or the program counter at the address of the communication call) to each of the receive calls found in

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

874 A. AFSAHI AND N. J. DIMOPOULOS %

Single—cycle predictor Single—cycle predictor
g B Minimum f = e e
I Average
[] Maximum
0.8f 0.8f
R Ke)
© ®
JOLX:L Losf
IS =
(0] (]
()] (o))
go.4— 0.4
(]
>
< <
o0l | -8 BT
02 - P
— CG
o —A- PSTSWM
BT SP CG PSTSWM % 10 20 30 40 50 60 70
N = 64 for CG, and 49 for others Number of processes

Figure 8. The effects of the Single-cycle predictor on the applications.

the applications. This can be implemented with the help of the compiler or by the programmer through
a pre-receive (tag) operation which will be passed to the communication subsystem to predict the next
receive call before the actual receive call is issued.

To this tag and at the communication assist, we assign this receive call. A hit is recorded if, in
subsequent encounters of the tag, the requested communication is the same as the receive call already
associated with the tag. Otherwise, a miss is recorded and the tag is assigned the newly requested
receive call. The performance of the Tagging predictor is shown in Figure 9. It is evident that this
predictor does not have a good performance on the applications. It cannot predict the communication
patterns of PSTSWM at all, and has a degrading performance for all other applications when the
number of processes increases.

6.3. The Tag-cycle predictor

The Tagging predictor did not have a good performance on the applications while the Single-cycle
predictor had a very good performance. We would like to see the impact of the cycle algorithm on the
Tagging predictor. Therefore, we combine the Tagging algorithm with the Single-cycle algorithm and
call it the Tag-cycle predictor.

In the Tag-cycle predictor, we attach a different tag to each of the communication requests found
in the benchmarks and do a Single-cycle discovery algorithm on each tag. To this tag and at the
communication assist, we assign the requested receive call, to be called the fagcycle-head (this is
the first receive call that is requested at this tag, or the call that causes a miss). We log the sequence
of the requests at this tag until the tagcycle-head is requested again. This stored sequence constitutes a
cycle at each tag, and can be used to predict the subsequent requests. The performance of the Tag-
cycle predictor is shown in Figure 10. The Tag-cycle predictor performs well on all benchmarks.

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

MESSAGE PREDICTION FOR CLUSTERS OF MULTIPROCESSORS

875

Tagging predictor

Tagging predictor

Hl Minimum r
0.8 I Average j g;
[] Maximum i & CG
08 —A- PSTSWM
2 o
‘50.6 g
o Tosef
c =
©
0.4 %
g S0.4}
o)
= >
< <
2
0 0.2
0 0 ,
BT SP CG PSTSWM 0 10 20 30 40 50 60 70
N = 64 for CG, and 49 for others Number of processes
Figure 9. The effects of the Tagging predictor on the applications.
Tag-cycle predictor Tag-cycle predictor
1 Bl Minimum 1 m AR 7
I Average
[] Maximum
0.8¢ 0.8
RS o)
B ®
1067 TOIG
< £
))
o
S04 %04
) So.
= >
< <
0.2 —= BT
02 ~- SP
- CG
0 —A- PSTSWM
BT SP CG PSTSWM 0 10 20 30 40 50 60 70

N = 64 for CG, and 49 for others

Number of processes

Figure 10. The effects of the Tag-cycle predictor on the applications.

Copyright © 2002 John Wiley & Sons, Ltd.

Concurrency Computat.: Pract. Exper. 2002; 14:859-883

876 A. AFSAHI AND N. J. DIMOPOULOS %

Tag-betttercycle predictor

Tag-bettercycle predictor

Hl Minimum 1r — =
I Average =
] Maximum V\O
0.8/ 0.8f
.9 O
o K
oL 067 Toef
< c
(0]
fe)) (0]
S04/ So.af
Q o}
= >
< <
=BT
= CG
0 —A- PSTSWM
BT 8P CG PSTSWM % 10 20 30 40 50 60 70
N = 64 for CG, and 49 for others Number of processes

Figure 11. The effects of the Tag-bettercycle predictor on the applications.

Its performance is the same as the Single-cycle predictor on BT and PSTSWM. However, it has a
better performance on CG and a lower performance on SP.

6.4. The Tag-bettercycle predictor

In the Tag-cycle predictor, as soon as a receive call breaks a cycle we remove the cycle and form a
new cycle. In the Tag-bettercycle predictor, we keep the last cycle associated with each tagcycle-head
encountered in the communication patterns of each process. This means that when a cycle breaks we
maintain this cycle in memory for later references. If we have not already seen the new tagcycle-head
then we form a new cycle for it, otherwise we predict the next communication call based on the member
of the cycle associated with this new tagcycle-head that we have from the past in memory.

The performance of the Tag-bettercycle predictor is shown in Figure 11. The Tag-bettercycle
predictor performs well on all benchmarks. Its performance is the same as the Single-cycle and Tag-
cycle predictors on BT and PSTSWM. However, it has a better performance on the CG and a lower
performance on SP relative to the Single-cycle predictor. The Tag-bettercycle predictor has a better
performance on SP compared to the Tag-cycle predictor. We also found that the applications have very
small numbers of tagbettercycle-heads (at most two) under the Tag-bettercycle predictor and different
system sizes.

6.5. Message predictors’ comparison
Figure 12 presents a comparison of the performance of the predictors presented in this paper when the

number of processes is 64 for CG and 49 for the other benchmarks. As we have seen so far, Single-
cycle, Tag-cycle, and Tag-bettercycle all perform well on the benchmarks. However, the performance

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

% MESSAGE PREDICTION FOR CLUSTERS OF MULTIPROCESSORS 877

Il Tagging
I Single-cycle
. [Tag-cycle
0.8t [] Tag-bettercycle

2

=

©

S

_'L 0.6r

=

(0]

o))

©0.4f

[0

>

<

o
[N
:

""BT sP ©G PSTSWM

N = 64 for CG, and 49 for others

Figure 12. Comparison of the performances of the predictors on the applications.

Table I. Memory requirements (in 6-tuple sets) for the predictors when N = 64
for CG, and N = 49 for BT, SP, and PSTSWM.

BT SP CG PSTSWM

Tagging 12 12 10 7
Single-cycle 43 43 138 204
Tag-cycle 60 72 40 693

Tag-bettercycle 60 108 40 693

of the Single-cycle is better on the SP benchmark while Tag-cycle and Tag-bettercycle have better
performance for the CG benchmark. Similar results have been found for the other system sizes [33].

6.5.1. Predictor’s memory requirements

Table I compares the memory requirements of the message predictors on the application benchmarks
when the number of processes is 64 for CG and 49 for BT, SP, and PSTSWM. We have found that the
memory requirements of the predictors decrease gradually when the number of processes decreases.
The numbers in the table are the multiplication factor for the amount of storage needed to maintain the
message 6-tuple sets. It is quite clear that the memory requirements of the predictors is low. This makes

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

878 A. AFSAHI AND N. J. DIMOPOULOS %

them very attractive for the implementation at the network interface. Comparatively, predictors (Single-
cycle, Tag-cycle, and Tag-bettercycle) need higher memory requirements for the PSTSWM application.
Although the classical LRU, LFU, and FIFO heuristics need less memory requirements, but as stated
earlier the beauty of the predictors lies in the fact that they predict with high accuracy and transfer
only one message to the cache which should dramatically reduce the cache pollution effect, if any. This
should also bring down the software cost of the implementation.

The storage requirements of the predictors have been found using the following formulae:

Memgingle-cycle = Maximum cycle length (1)
MemTagging = Maximum number of tags (2)
MemTag_cycle = Memtagging X Maximum cycle length of each tag 3)
MemTag vettercycle = MemTag_cycle X Maximum number of tagbettercycle-heads @)

6.6. Sensitivity analysis of the message predictors

In this section, we are interested in discovering the prediction sensitivity of the Single-cycle, Tagcycle,
and Tag-bettercycle message predictors to the varying starting message reception calls. That is, what
would be the difference in the predictor’s performance if we begin the predictors with the first message
reception call, second message reception call, and so on. In fact, we applied the predictors on the
benchmarks starting with each of the first 100 message reception calls. Figure 13 compares the average
hit ratios of the proposed predictors in this paper (that is with the initialization phase) over the starting
first 100 message reception calls with the predictors without the initialization phase as proposed in [13].
It is clear that the revised predictors proposed in this work perform better than the previously proposed
predictors in [13] for the PSTSWM application. However, they have the same average performance on
the BT, SP, and CG benchmarks. Meanwhile, the average performances of the predictors, with varying
starting message reception calls, are more than 95% on the BT, CG, and PSTSWM benchmarks, and
more than 75% on the SP benchmark.

7. INTEGRATING MESSAGE PREDICTORS WITH THE NETWORK INTERFACE

In this section, we briefly discuss how a message predictor can be used and integrated into the network
interface. Predictors would reside beside the communication assist or network interface. They monitor
the message reception call patterns of their host process and make a prediction according to their
prediction algorithms. Then, the network interface uses the predictions to move the early arrival
messages into the cache.

As stated above, the predictors would execute on the communication assist of each node of the
parallel machine, and predict the message reception calls based on the past history of communications.
The Single-cycle predictor does not need any help from the compiler or programmer. However, the
Tag-based predictors (Tagging, Tag-cycle, and Tag-bettercycle) require an interface to pass some
information from the program to the network interface. With a simple help from the programmer or
compiler, this can be done through inserting pre-receive (tag) instructions in the program well above
each specific receive communication operation, but evidently after the previous receive communication
operation. The Tag-based predictors can be pure dynamic predictors if another level of prediction is

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

MESSAGE PREDICTION FOR CLUSTERS OF MULTIPROCESSORS 879

Single-cycle predictor (BT) Single—cycle predictor (SP)
—o—=% = < ©

o
©
T
o
©

o
©
T
o
©

Lozt Lozt
o o
o6} Tost
= =
0057 ©05[
()] (o]
So.4¢ So.4f
g) (]
Z03f Zoa3f

o

N
T
o
n

0.1r —&- With the initialization phase 0.1F -8~ With the initialization phase
0 -~ Without the initialize‘ltion phase ‘ -0~ Without the initialization phase
0 10 20 30 40 50 00 10 20 30 40 50
Number of processes Number of processes
Single—cycle predictor (CG) Single—cycle predictor (PSTSWM)
1r 10
= = = 5—a £1
09 GH—=% & @ oo} ©
0.8f 0.81
So7t Lozt
© ©
R o
LL06r L 06
= =
0057 ©05f
(@] ()}
©0.4 ©o.4p
(] [
Zoa3f Zoa3f
0.2r 0.21
0.1 —&- With the initialization phase 0.11 - With the initialization phase
-~ Without the initialization phase -~ Without the initialization phase
0 . . - - - ; . . . ! : ,
0 10 20 30 40 50 60 70 00 10 20 30 40 50
Number of processes Number of processes
Tag-cycle predictor (BT) Tag-cycle predictor (SP)
T o—ee—=8 & & © r
0.9¢ 09l
0.81 0.8
Lozt Lozt
© ©
R R
1 0.6f 1 0.6f
= =
= <
005} 05"
(o] (@]
©o.4¢ ©0.4¢
(] (]
Zoaf Zoa3f
0.2r 0.2
0.1r -8 With the initialization phase 0.1 —B- With the initialization phase
-~ Without the initialization phase —O— Without the initialization phase
. : : : . 0 . : : : ,
O0 10 20 30 40 50 0 10 20 30 40 50
Number of processes Number of processes

Figure 13. Comparison of the performances of the predictors with the initialization phase with the predictors
without the initialization phase over the starting first 100 message reception calls.

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

880 A. AFSAHI AND N. J. DIMOPOULOS

Tag-cycle predictor (CG) Tag-cycle predictor (PSTSWM)
T && © < © i 5 = a8 3|

o
©
T
o
©

=}
®
T
o
[=3)

o)
Lozt =07f
[]
Losr Tost
< °
005} 05"
(o] ()]
©0.4r ©o.4r
g g
Zo03f Zo03f

o
)
T
<)
>

0.1 -8~ With the initialization phase 0.1 —8- With the initialization phase ‘
-~ Without the initialization phase 0 ‘ ‘ﬁ Without the initialization phase |
% 10 20 30 40 50 60 70 0 10 20 30 40 50
Number of processes Number of processes
Tag-bettercycle predictor (BT) Tag-bettercycle predictor SP
T oe—e—o & & 5] 1
0.9f 0.9 e_e\é—é——é\e

o
(o]
T
o
©
T

o

Lozt Lozt
@ ©

o o
Tosf Tosf
= =
05 05
()} (o)}
So.4r Co.4r
[[0
Zoa3f Zoal

o
N
T
o
N
T

0.1r —&- With the initialization phase 0.1r —&- With the initialization phase
—O— Without the initialization phase -~ Without the initialization phase
00 10 20 30 40 50 O0 10 20 30 40 50
Number of processes Number of processes
Tag-bettercycle predictor (CG) Tag-bettercycle predictor (PSTSWM)
r G—Q < < Q r o = g—8—8 £
0.97 oof °
0.8 08l
Lozt So7t
© o
106 LL06r
= <
@057 ©05[
)])]
©o.4p ©0.41
g: [
Zo3} Zo3f
0.2 02l
0.1r —&- With the initialization phase 0.1F -8~ With the initialization phase
-0~ Without the initialization phase —O— Without the initialization phase
00 10 20 30 40 50 60 70 00 10 20 30 40 50
Number of processes Number of processes

Figure 13. Continued.

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

% MESSAGE PREDICTION FOR CLUSTERS OF MULTIPROCESSORS 881

done on the tags themselves at the network interface. This way, there is no need for the program to pass
pre-receive (tag) information to the network interface. However, the performance of these rwo-level
Tag-based prediction techniques has not yet been evaluated.

8. CONCLUSIONS

Communication latency adversely affects the performance of networks of workstations. A significant
portion of the software communication overhead belongs to a number of message copying operations.
Ideally, it is very desirable to have a true zero-copy protocol where the message is moved directly
from the send buffer in its user space to the receive buffer in the destination without any intermediate
buffering. However, this is not always possible as a message may arrive at the destination where
the corresponding receive call has not yet been issued. Hence, the message has to be buffered in a
temporary buffer.

In this paper, we have shown that there is a message reception communication locality in message-
passing applications. We have utilized this communication locality and devised different message
predictors for the receiver sides of communications. By predicting receive calls early, a node can
perform the necessary data placement upon message reception and move the message directly into
the cache. We have presented the performance of these predictors on some parallel applications.
The performance results are quite promising and justify more work in this area. We have also presented
that these predictors are not sensitive to the starting message reception call and can capture the patterns
of communications for the correct prediction.

We envision that these predictors will be used to drain the network and place the incoming messages
in the cache in such a way so as to increase the probability that the messages will still be in the cache
when the consuming thread needs to access them.

Further issues we are presently investigating include mechanisms for in-the-cache late binding
and thread scheduling to guarantee that the consuming thread finds the message in the cache of the
processor it executes on. We shall report on these issues in the future.

ACKNOWLEDGEMENTS

This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada
(NSERC) and the University of Victoria. We would like to thank Dr Murray Campbell at the IBM T J Watson
Research Center for his kind help in accessing the IBM Deep Blue machine, and the computer staff at the
University of Victoria for the access to the University of Victoria IBM SP2. Finally, we would like to thank
the anonymous referees for their insightful comments and suggestions.

REFERENCES

1. Boden NJ, Cohen D, Felderman RE, Kulawik AE, Seitz CL, Seizovic JN, Su W-K. Myrinet: A gigabit-per-second local
area network. IEEE Micro 1995; 15(1):29-36.

2. Gigabit Ethernet Alliance. Running 1000BASE-T: Gigabit ethernet over copper. White Paper, September 1999.
http://www.10gea.org/.

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

882

A. AFSAHI AND N. J. DIMOPOULOS

20.

21.

22.

23.

24.

25.

. Eicken TV, Culler DE, Goldstein SC, Schauser KE. Active messages: A mechanism for integrated communication

and computation. Proceedings of the 19th Annual International Symposium on Computer Architecture, Gold Coast,
Queensland, Australia, May 1992. ACM Press, 1992; 256-265.

. Lauria M, Pakin S, Chien AA. Efficient layering for high speed communication: The MPI over fast message (FM)

experience. Cluster Computing Journal 1999; 2:107-116.

. Dubnicki C, Bilas A, Chen Y, Damianakis S, Li K. VMMC-2: Efficient support for reliable, connection-oriented

communication. Proceedings Hot Interconnect’97, Stanford, CA, USA. IEEE Computer Society Press, 1997.

. Eicken TV, Basu A, Buch V, Vogels W. U-Net: A user-level network interface for parallel and distributed computing.

Proceedings of the 15th ACM Symposium on Operating Systems Principles, Copper Mountain resort, Colorado, USA.
ACM Press, 1995; 40-53.

. Dunning D, Regnier G, McAlpine G, Cameron D, Shubert B, Berry F, Merritt AM, Gronke E, Dodd C. The virtual interface

architecture. IEEE Micro 1998; 18(2):66-76.

. Tezuka H, O’Carroll F, Hori A, Ishikawa Y. Pin-down cache: A virtual memory management technique for zero-copy

communication. First Merged Symposium IPPS/SPDP 1998 12th International Parallel Processing Symposium and 9th
Symposium on Parallel and Distributed Processing, Orlando, FL, USA. IEEE Computer Society Press, 1998; 308-314.

. Rodrigues SH, Anderson TE, Culler DE. High-performance local area communication with fast sockets. USENIX 1997

Annual Technical Conference, Anaheim, CA, USA, January 1997. USENIX, 1997; 257-274.

. Banikazemi M, Govindaraju RK, Blackmore R, Panda DK. Implementing efficient MPI on LAPI for IBM RS/6000 SP

systems: Experiences and performance evaluation. Proceedings of the of IPPS/SPDP 1999, 13th International Parallel
Processing Symposium and 10th Symposium on Parallel and Distributed Processing, San Juan, Puerto Rico, April 1999.
IEEE Computer Society Press, 1999; 183—190.

. Takahashi T, O’Carrol F, Tezuka H, Hori A, Sumimoto S, Harada H, Ishikawa Y, Beckman PH. Implementation and

evaluation of MPI on an SMP cluster. PC-NOWY9, International Workshop on Personal Computer based Networks
Of Workstations, held in conjunction with IPPS/SPDP’99, San Juan, Puerto Rico (Lecture Notes in Computer Science,
vol. 1586). Springer: Berlin, 1999; 1178-1192.

. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard. Version 1.1, June 1995.
. Afsahi A, Dimopoulos NJ. Efficient communication using message prediction for cluster of multiprocessors. Proceedings

of the CANPC’00, Fourth Workshop on Communication, Architecture, and Applications for Network-based Parallel
Computing, held in conjunction with HPCA-6, Toulouse, France (Lecture Notes in Computer Science, vol. 1797), January
2000. Springer: Berlin, 2000; 162—178.

. Afsahi A, Dimopoulos NJ. Communication prediction in message-passing systems. /4th Annual International Symposium

on High Performance Computing Systems and Applications, HPCS’2000. High Performance Computing Systems and
Applications, Victoria, Canada, January 2000. Kluwer: Dordrecht, 2002.

. Afsahi A, Dimopoulos NJ. Hiding communication latency in reconfigurable message-passing environments. Proceedings

IPPS/SPDP 1999, 13th International Parallel Processing Symposium and 10th Symposium on Parallel and Distributed
Processing, San Juan, Puerto Rico. IEEE Computer Society Press, 1999; 55-60.

. Mukherjee SS, Hill MD. Using prediction to accelerate coherence protocols. Proceedings 25th Annual International

Symposium on Computer Architecture, Barcelona, Spain. ACM/IEEE Computer Society Press, 1998; 179-191.

. Blumrich M, Li K, Alpert R, Dubnicki C, Felten E, Sandberg J. A virtual memory mapped network interface for the

SHRIMP multicomputer. Proceedings 21st Annual International Symposium on Computer Architecture, Chicago, IL, USA.
IEEE Computer Society Press, 1994; 142—153.

. Geoffray P, Prylli L, Tourancheau B. BIP-SMP: High performance message passing over a cluster of commodity SMPs.

SC’99: High Performance Networking and Computing Conference, Portland, OR, USA, November 1999. ACM/IEEE
Computer Society Press, 1999.

. Chu H. Zero-copy TCP in Solaris. Proceedings of the USENIX Annual Technical Conference, San Diego, CA, USA.

USENIX, 1996; 253-263.

Druschel P, Peterson LL. Fbufs: A high-bandwidth cross-domain transfer facility. Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles, Asheville, NC, USA. ACM Press, 1993; 189-202.

Fahringer T, Mehofer E. Buffer-safe and cost-driven communication optimization. Journal of Parallel and Distributed
Computing 1999; 57(1):33-63.

Gupta M, Schonberg E, Srinivasan H. A unified framework for optimizing communication in data-parallel programs. [EEE
Transactions on Parallel and Distributed Systems 1996; 7(7):689-704.

Lai A-C, Falsafi B. Memory sharing predictor: The key to a speculative coherent DSM. Proceedings 26th Annual
International Symposium on Computer Architectures, Atlanta, Georgia, USA. ACM/IEEE Computer Society Press, 1999;
172-183.

Kaxiras S, Goodman JR. Improving CC-NUMA performance using instruction-based prediction. International Symposium
on High Performance Computer Architecture, Orlando, FL, USA. ACM/IEEE Computer Society Press, 1999; 161-171.
Zhang Z, Torrellas J. Speeding up irregular applications in shared-memory multiprocessors: Memory binding and group

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

MESSAGE PREDICTION FOR CLUSTERS OF MULTIPROCESSORS 883

26.

27.

28.

29.

30.

31.

32.

33.

prefetching. Proceedings 22nd Annual International Symposium on Computer Architectures, Santa Margherita, Italy.
ACM/IEEE Computer Society Press, 1995; 188-199.

Dahlgren F, Dubois M, Stenstrom P. Sequential hardware prefetching in shared-memory multiprocessors. IEEE
Transactions on Parallel and Distributed Systems 1995; 6(7):733-746.

Mowry T, Gupta A. Tolerating latency through software-controlled prefetching in shared-memory multiprocessors. Journal
of Parallel and Distributed Computing 1991; 12(2):87-106.

Bailey DH, Harsis T, Saphir W, der Wijngaart RV, Woo A, Yarrow M. The NAS Parallel Benchmarks 2.0. Report NAS-95-
020, NASA Ames Research Center, December 1995.

Worley PH, Foster IT. Parallel spectral transform shallow water model: A runtime-tunable parallel benchmark code.
Proceedings Scalable High Performance Computing Conference, Knoxville, TN, USA. IEEE Computer Society Press,
1994; 207-214.

Kim J, Lilja DJ. Characterization of communication patterns in message-passing parallel scientific application programs.
Proceedings of the CANPC’98, Workshop on Communication, Architecture, and Applications for Network-based Parallel
Computing, held in conjunction with HPCA’98, Las Vegas, Nevada, USA (Lecture Notes in Computer Science, vol. 1362),
February 1998. Springer: Berlin, 1998; 202-216.

Dao BV, Yalamanchili S, Duato J. Architectural support for reducing communication overhead in multiprocessor
interconnection networks. Proceedings Third International Symposium on High Performance Computer Architecture, San
Antonio, TX, USA. IEEE Computer Society Press, 1997; 343-352.

Chodnekar S, Srinivasan V, Vaidya A, Sivasubramaniam A, Das C. Towards a communication characterization
methodology for parallel applications. Proceedings Third International Symposium on High Performance Computer
Architecture, San Antonio, TX, USA. IEEE Computer Society Press, 1997; 310-321.

Afsahi A. Design and evaluation of communication latency hiding/reduction techniques for message-passing environments.
PhD Dissertation, Department of Electrical and Computer Engineering, University of Victoria, April 2000.

Copyright © 2002 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2002; 14:859-883

	1 INTRODUCTION
	2 MOTIVATION AND RELATED WORK
	2.1 Avoiding extra message copying operations
	2.1.1 Using programmed I/O and DMA at the send side
	2.1.2 Using redirection mechanisms at the receiver side
	2.1.3 Re-mapping and copy-on-write techniques
	2.1.4 Compiler techniques

	2.2 Prediction techniques

	3 USING MESSAGE PREDICTIONS
	4 EXPERIMENTAL METHODOLOGY
	5 RECEIVER-SIDE LOCALITY ESTIMATION
	5.1 Communication locality
	5.2 The LRU, FIFO, and LFU heuristics

	6 MESSAGE PREDICTORS
	6.1 The single-cycle predictor
	6.1.1 Initialization phase

	6.2 The Tagging predictor
	6.3 The Tag-cycle predictor
	6.4 The Tag-bettercycle predictor
	6.5 Message predictors' comparison
	6.5.1 Predictor's memory requirements

	6.6 Sensitivity analysis of the message predictors

	7 INTEGRATING MESSAGE PREDICTORS WITH THE NETWORK INTERFACE
	8 CONCLUSIONS

