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My research is largely in analytic
number theory and random matrix
and point process theory.
Problems I am interested in often
involve applying ideas from
functional and harmonic analysis
and probability to number theory.
Two examples of topics I have
been interested in recently are:

The distribution of arithmetic functions in short intervals In a first course in number theory
one often studies the average value of arithmetic functions or sequences on deterministic
long intervals; for instance the prime number theorem is the statement that the likelihood
a random number n in between 1 and X is prime is roughly 1/ log X .

What can be said about the number of primes in random short interval [n, n + X1/4]
where n is again chosen uniformly from 1 to X? Such a question is more subtle than
the prime number theorem – this question in particular is closely connected to the fine-
scale distribution of zeros of the Riemann zeta-function. Similar questions for sums of
divisor functions over random short intervals are related to moments of the Riemann
zeta-function. In recent work collaborators and I have answered an old question of this
sort about the number of squarefree integers in random short intervals. The problem
ends up being related to questions of the following sort: count the number of reduced
rational solutions to

a1/q1 + a2/q2 + a3/q3 + a4/q4 = 0

where |qi | ≤ Q and |ai/qi | ≤ Q−1/10. Are most solutions given by the obvious
‘paired’ solutions, in which e.g. a1/q1 = −a2/q2 and a3/q3 = −a4/q4?

The distribution of random or special trigonometric polynomials An old theorem Salem
and Zygmund says that for a “typical” choice of independent random coefficients ϵ1 =
±1, ϵ2 = ±1, ...
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as N grows. What happens when the coefficients ϵn are chosen in a more structured way?
For instance I would like to know if the same is true when ϵn is a random multiplicative
function. One can also ask extremal questions. It is known that there exists choices of
ϵn such that the above quantities are O(

√
N). (Parseval tells us this is the smallest one

could hope for.) Can anything sensible be said when the coefficients ϵn are restricted to
be a multiplicative function?

If you find topics of this sort interesting or would like to hear more about my research, do not hesitate to contact me at brad.rodgers@queensu.ca


