Please enable javascript to view this page in its intended format.

Queen's University

BIO 537 2014-15
Dr. Wm. Plaxton

Rm:   3513 Bioscience Complex
Tel:   (613) 533-6150
Faculty Web Site:

PLEASE NOTE:Prof. Plaxton will be taking a sabbatical leave from July 1, 2014- June 31, 2015.  He is not planning to recruit BIOL537 thesis students during this sabbatical. However, an exception might be made if a highly qualified student having previous practical lab experience (e.g. BIOL401-404 &/or past summer or volunteer work experience in a ‘biosciences’ research lab, etc) was extremely motivated to carry out their BIOL537 thesis research in the Plaxton lab during the upcoming ‘14-‘15 academic year.


Plant Biochemistry, Proteomics & Molecular Biology.

Long-term research goals are to elucidate the molecular, regulatory, and functional properties of key enzymes of plant carbohydrate and phosphate metabolism. Genome sequencing provides a crucial blueprint for systematic metabolic studies, but also reveals that plant metabolism and its control is incredibly complex and poorly understood. Many genes encode unknown ENZs &/or multiple isozymes having unidentified individual properties/roles. Metabolic deciphering requires integrated studies of gene expression, metabolite levels and in vivo fluxes, transgenic plants with altered ENZ expression, and individual ENZ molecular/regulatory properties and cellular/subcellular location. Post-translational protein modification by protein-kinase mediated phosphorylation is crucial since this can control an ENZ’s activity, subcellular location, protein interactions, &/or turnover in response to various extra- or intracellular signals. For more information about our research approach and recent incorporation of innovative methodologies, please visit the Plaxton-lab website ( ). Thanks to collaborators, the dedicated efforts of our students and post-docs, and generous NSERC and Queen’s Research Chair support these innovations have led to several remarkable discoveries that have set the stage for our current research.

Supervision of BIOL537 students
As indicated above, supervision of one highly-qualified BIOL537 student might be possible. Starting date is flexible. However, SWEP positions ( are available that could potentially be used to employ an incoming BIOL537 student as a full-time research assistant during the upcoming spring/summer, prior to their enrollment in BIOL537 next Sept. BIOL537students receive training in the theoretical and practical aspects of various lab techniques needed for their thesis research. Student supervision is provided by Prof. Plaxton, as well as his research associate, post-doc, and senior grad students.

Student Qualifications
The main prerequisites are that the student is a highly motivated individual with excellent 'work ethic', communication, & interpersonal skills, (ii) has lots of initiative and is well organized, & (iii) enjoys lab work. Major preference is given to students who have completed Biology’s 400-level practical lab courses (BIOL401*, 402*, 403*, & 404*) &/or have previous summer or volunteer experience working in a ‘cell & molecular’ oriented research lab, and might be interested in pursuing post-graduate (MSc/PhD) research in the plant sciences following completion of their BSc. Those who wish to work with us during the summer of 2014 should submit an application for one of Prof Plaxton’s SWEP positions for Research Assistants in Plant Biochemistry & Molecular Biologyposition (application deadline = Feb. 15, 2014).

Potential Projects
There are a number of potential projects available, with the final choice depending upon the student's background and specific interests, and starting date. Systems we currently study include developing and germinating castor oilseeds, and suspension cell cultures and seedlings of the model plant Arabidopsis thaliana. Projects range from ENZ purification and characterization, to metabolite extraction and quantification, to the use of 2-dimensional gel electrophoresis, ENZ kinetic studies, immunological techniques (western blotting &/or co-immunoprecipitation using monospecific antibodies) or molecular techniques (transcript profiling via RT-PCR, screening & characterization of transgenic plants, etc) to assess the influence of seed development or environmental stressors such as phosphate starvation on ENZ regulation or expression. Possible projects also include screening and analyzing transgenic Arabidopsis plants in which several of the ENZs that we are studying have been 'knocked out' (loss-of-function) or over-expressed.

Significance of Our Research
Understanding the organization and control of plant carbohydrate and phosphate metabolism is crucial to ongoing biotech efforts to improve Canada’s crops. Our discovery of novel Class-1 & Class-2 phosphoenolpyruvate carboxylase isoforms in castor oilseeds and their control by allosteric effectors, protein:protein interactions, reversible phosphorylation, and monoubiquitination may lead to strategies for modifying levels of storage proteins vs. vegetable oil content in transgenic seeds. Similarly, our studies of the biochemical adaptations of phosphate-starved plants has generated knowledge and molecular tools that will facilitate the development of phosphate-efficient transgenic crops, urgently needed to reduce mankind’s over-reliance on  unsustainable, polluting, and non-renewable phosphate-containing fertilizers in agriculture.



Kingston, Ontario, Canada. K7L 3N6. 613.533.2000