Please enable javascript to view this page in its intended format.

Queen's University

BIOL 537 2014-15
Dr. V. Friesen

Rm:   4443A Bioscience Complex
Tel:   (613) 533-6156
Faculty Web Site:


My research program involves applying state-of-the-art methods in molecular genetics and bioinformatics both to test evolutionary theory and to aid conservation of endangered species (see Our main focus is investigating the mechanisms by which biodiversity is generated (e.g., how species multiply), which is important for understanding many aspects of evolution and ecology. Some projects have applications to the conservation of specific species, with data being used for assessments under both the Canadian and US endangered species acts. Most projects involve seabirds, but others involve woodland birds, birds of prey, and fish. Questions encompass multiple levels of biological organization, from individual behaviour to phylogenetics (evolutionary trees). Two potential projects are available for 537 students in 2014-15:

1) Screening candidate genes in thick-billed murres (Uria lomvia) throughout their range. A panel of DNA polymorphisms is being identified for this seabird species using sequence data obtained from birds from 5 colonies in Atlantic Canada along a latitudinal gradient. The successful SWEP applicant will amplify a panel of loci from approx. 10 individual from each of the ca. 20 colonies from throughout the range. Targeted genes will include genes apparently under selection and genes neutral selection to address evolutionary questions related to climate change, local adaptation, speciation and phylogeography.

2) Comparison of temporally distinct breeding (hot vs cool season) populations of band-rumped storm-petrels (Oceanodroma castro) and the threatened Monteiro’s storm petrel (Oceanodroma monteiroi) for variation in several genes associated with circadian rhythms and dispersal (e.g., ADCYAP1, DRD4). The student will use general protocols to sequence the genes from DNA samples previously collected from these storm-petrels. The student will then test for differences between the temporal populations and across the species range. This project will enable the investigation of genes potentially involved in sympatric speciation.

By clarifying the genetic basis of functional traits, the fitness effects of these traits, and existing levels of genetic variation, the proposed work promises to help resolve three general issues that have been identified as fundamental gaps in our current understanding of ecology and evolution: 1) What is the genomic basis of fitness-related traits? (Are they under the control of one gene or many? Does variation involve structural or regulatory genes? What are the pleiotropic effects of those genes?) 2) What are the relative roles of gene flow and adaptation in preventing/promoting population differentiation and speciation in natural populations of animals? 3) How much potential do populations have for local adaptation, and how quickly can they adapt? Results will also have at least two significant benefits for the conservation of biodiversity: 1) Understanding the genetic basis of adaptation will help us predict the ability of populations to adapt to anthropogenic challenges such as climate change. 2) Providing estimates of both neutral and adaptive variation will let us define more effective units for conservation for two species of seabirds challenged by climate change. As top predators, seabirds are key components of numerous marine ecosystems, and, given its long coastlines, Canada has a high international responsibility for their protection.

Kingston, Ontario, Canada. K7L 3N6. 613.533.2000